

TECHNICAL NOTE

Securing Edit and Admin

Product version: 4.60

Document version: 1.1

Document creation date: 05-05-2006

Purpose

EPiServer allows relocation of the edit and admin directories and configurable http ports, to make it harder for
intruders to try to access sensitive resources.

This document describes how to write EPiServer applications that are somehow dependent on the edit and admin
directories and also, how to ensure that the applications will continue to work even if those directories are moved
to unknown locations. The document also contains instructions on how to secure the edit and admin directories.

2 | Securing Edit and Admin

Revision Information

Document version Comments

1.0 4.60 release version.

1.1 Changes in the "Securing the edit and admin Directories" chapter - added step
5 in instructions and updated image.

Table of Contents

SECURING THE EDIT AND ADMIN DIRECTORIES 2

RELOCATION OF EDIT AND ADMIN DIRECTORIES 3

CONFIGURABLE HTTP PORTS 7

DYNAMIC CSS FILES 8

Securing the edit and admin Directories

Follow the steps below to secure edit/admin and its ports on a default installation of EPiServer:

1. Change the names of the edit and admin directories, e.g. c:\inetpub\episerver\admin to
c:\inetpub\episerver\secretAdmin.

2. Change the EPsAdminDir, EPsEditDir, EPnEditHttpPort, and EPnAdminHttpPort using EPiServer
Manager. Ports can be omitted if you are only changing the directories.

Relocation of edit and admin Directories | 3

3. Change the ports in the Internet Information Services (IIS) for the site where you wish to use custom
ports. This step can be omitted if you are only changing the directories.

4. Change the <location path=”edit”> and <location path=”admin”> to correspond to the changed
directories.

5. Edit the settings for the SysRoot and SysRecycleBin page types in Admin mode and change
the path in the "File name" field so that it directs to the new edit directory.

6. Make sure that the ASP.NET account has read/execute permission for the new directories.

Relocation of edit and admin Directories

If a section begins with the text “No changes needed in existing applications", it means that the application does
not need any modifications to work with relocated directories for that particular section in EPiServer. The rest of
the text in the section is merely for informational purposes.

4 | Securing Edit and Admin

New Configuration Properties in web.config

The edit and admin directories are not hardcoded in EPiServer 4.50 and later. Instead, there are two new keys in
web.config that define the virtual directory locations:

EPsAdminDir location of admin directory, for example foo111/bar222

EPsEditDir location of edit directory, for example foo333/bar444

Applications can access these values by reading the new EditDir and AdminDir properties in the
ApplicationConfiguration object. If the keys are not defined in web.config, EditDir and AdminDir will return default
values “edit/” and “admin/” respectively.

The values returned by the EditDir/AdminDir properties have the format “path/”. To simplify their usage they are
guaranteed to always have a trailing “/” and never a leading “/”, even if defined otherwise in web.config.

Language Keys

No changes needed in existing applications.

All language keys work as previously - they are not affected by any directory relocations. This is also true for
relative language keys, i.e. keys that are prefixed with “#”.

Url Property in plugin Attributes

No changes needed in existing applications.

The EPiServer plugin loader in 4.50 and later knows how to handle relocated directories. Any references to
“~/edit/” and “~/admin/” in the Url property in the plugin attributes are automatically mapped to the real directory
locations. This is an operation that is completely transparent to the plug-ins. Therefore, plug-ins that refer to files
in edit/admin in their plugin attributes can continue to do so.

Example:

[GuiPlugIn(DisplayName="",Area=PlugInArea.EditPanel,

Url="~/edit/EditMultiLanguage.ascx”)]

Hardcoded Paths to edit and admin

Hardcoded paths that refer to the edit and admin directories need to be changed. To help developers with this,
the following is available:

Properties in the ApplicationConfiguration object

AdminUrl Absolute or relative URL to the admin directory. If the admin port is the same
port as in the current Http Context, the URL is relative, otherwise it is
absolute. The property is especially suited for environments with proxies,
where links should use relative URLs. The path is guaranteed to end with a
“/”.

EditUrl Absolute or relative URL to the edit directory. If the edit port is the same port
as in the current Http Context, the URL is relative, otherwise it is absolute.
The property is especially suited for environments with proxies, where links
should use relative URLs. The path is guaranteed to end with a “/”.

AbsoluteAdminUrl Absolute URL to the admin directory, including configured protocol, port and

Relocation of edit and admin Directories | 5

path from current configuration. The path is guaranteed to end with a “/”.

AbsoluteEditUrl Absolute URL to the edit directory, including protocol, port and path from
current configuration. Applications should use this property to get an URL to
the edit directory when they are not running under an Http Context. The path
is guaranteed to end with a “/”.

There are also properties for Http ports – see the Configurable Http Ports section for the details.

The UrlUtility class in the EPiServer.Util namespace contains the following methods:

ResolveUrl(url)

Resolve an expression like "~/edit" to a relative or absolute URL. The URL
that is created is relative as long as the Http port obtained, when resolving
the URL, is the same port as in the current Http Context. Otherwise the
created URL is absolute.

ResolveUrl(url, urlType) Overloaded version of ResolveUrl, where you can control whether the
created URL should be relative or absolute. UrlTypes is an enumerator in
EPiServer.Util that has the following values: Auto, Relative and Absolute.
If Auto is used, the results are the same as using the ResolveUrl(url) method.
If relative or absolute is used, the result is forced to return the relative or
absolute URL, regardless of the value of the current Http Context.

ResolveHostUrl() Resolve host URL using the current Http Context.

ResolveHostUrl(context) Resolve host URL using the provided Http Context.

ResolveHostUrl(context, port) Resolve host URL using the provided Http Context and port.

The ControlLoader Web control:

ControlLoader Loads a user control using an URL expression like
"~/edit/FileManagement.ascx" (the real locations of expressions like “~/edit”
depend on the site’s configuration and are resolved runtime).

References to User Controls in edit/admin

From a security point of view, it is best if you avoid references to user controls in the edit and admin directories
altogether. But if your application requires this anyway, follow the guidelines below to ensure that your application
will work even if the directories are relocated.

Replace any user control declarations using the <%@ Register syntax with the ControlLoader Web control. Do
this when:

• You are using a user control located in the edit directory from a Web Form or user control outside edit.

or

• You are using a user control located in the admin directory from a Web Form or user control outside
admin.

Instead of:

<%@ Register TagPrefix="edit" TagName="FileManagement"
"Src="~/edit/FileManagementControl.ascx"%>
...
<edit:FileManagement runat="server"/>

write:

<EPiServer:ControlLoader runat="Server"
Src="~/edit/FileManagementControl.ascx"/>

6 | Securing Edit and Admin

Add the EPiServer declaration to your aspx/ascx file, if needed:

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls"
Assembly="EPiServer" %>

If you reference a user control from a file in the same directory, it is OK to use the ASPNET user control
registration syntax, as long as you do not use “~/” or “../” in the URL. What happens when you use the “~/” or “../”
syntax is that when the page is loaded runtime, ASPNET resolves the URL to an address that corresponds to the
file’s location at design time. This is not necessarily the same as the runtime address, since the directory that the
page resides in may have been relocated.

In the following example, a file in edit references the CommandActions.ascx user control, also a file in edit:

This is OK:

<%@ Register TagPrefix="EPiServerSys" TagName="CommandActions"
Src="CommandActions.ascx"%>

These are not OK:

<%@ Register TagPrefix="EPiServerSys" TagName="CommandActions"
Src="~/edit/CommandActions.ascx"%>

<%@ Register TagPrefix="EPiServerSys" TagName="CommandActions"
Src="../edit/CommandActions.ascx"%>

References to edit and admin Using “../”

In files both inside and outside the edit/admin directories, replace any URLs that begin with “../edit/” or
“../admin/” with URLs that are based on the current site’s configuration. This applies to nested
directories as well, for example “../../edit/”.

A good rule: files inside the edit and admin directories should always refer to other files using URLs
that are built from EditUrl/AdminUrl in ApplicationConfiguration or the ResolveUrl method in the
EPiServer.Util.UrlUtility class. As a rule, avoid references to files using the “../” syntax altogether.

For example, in files inside edit/admin:

Instead of:

Response.Redirect("~/Edit/Default.aspx?id=" + pageLink.ID.ToString());

Response.Redirect("~/Admin/FileManagement.aspx");

write:

Response.Redirect(Configuration.EditUrl + "Default.aspx?id=" +
pageLink.ID.ToString());

Response.Redirect(Configuration.EditUrl + "FileManagement.aspx");

For example, in files outside edit/admin:

Instead of:

Response.Redirect("../Edit/Default.aspx?id=" + pageLink.ID.ToString());

Response.Redirect("../Admin/FileManagement.aspx");

write:

Response.Redirect(Configuration.EditUrl + "Default.aspx?id=" +
pageLink.ID.ToString());

Configurable HTTP Ports | 7

Response.Redirect(Configuration.AdminUrl + "FileManagement.aspx");

References to files outside edit and admin Using “../”

When referencing files that are outside secured directories, the URLs can be relative to the site’s root
(protocol and port information not necessary). Make sure that the URLs are relative to the site’s root
and do not use expressions like “../dir1/dir2/file.css”.

For example, in aspx/ascx files inside edit and admin:

Instead of:

<link rel="stylesheet" type="text/css" href="../util/styles/system.css">

<script type='text/javascript' src="../util/javascript/system.js">
</script>

write:

<link rel="stylesheet" type="text/css"
href="<%=Configuration.RootDir%>util/styles/system.css">

<script type='text/javascript'

src="<%=Configuration.RootDir%>util/javascript/system.js">
</script>

Configurable HTTP Ports

Overview

The HTTP ports used to access edit and admin directories are configurable in EPiServer 4.50 and later.
Applications that rely on the default ports 80 (default HTTP port) and 443 (default HTTPS port) will probably need
to be modified to handle unknown ports.

Configuration Properties in web.config

There are 2 values in web.config for HTTP ports configuration:

EPnEditHttpPort HTTP port required to access the edit directory, for example 80 or 887.

EPnAdminHttpPort HTTP port required to access the admin directory, for example 80 or 887.

The port values can be accessed using properties in the ApplicationConfiguration called AdminHttpPort and
EditHttpPort.

Requirements

To enable configurable HTTP ports, the spidersupport HTTP module must be defined in web.config. The module
is defined by default in standard installations.

8 | Securing Edit and Admin

Dynamic CSS Files

Overview

Since the edit and admin directories can be relocated, all references to and from files in those directories must be
dynamic. This is also true for style sheet files, since they can be included by files in relocated directories and have
references to images, HTCs and other files. As style sheet files are static by nature, dynamic CSS files solve this
problem. Basically, it allows you to insert predefined tags into CSS files and the tags are parsed runtime.

The dynamic CSS files technology was designed with four goals in mind:

1. A concept that is easy to grasp and use.

2. It should be totally optional – if developers do not need it, they can just ignore it. If they want to make
only a single or a few CSS files dynamic, they can do so.

3. Dynamic CSS files should be completely transparent to browsers – the browsers should still think that
they are dealing with static CSS files, when they are in fact dynamic on the server.

4. Performance. The cost of using dynamic CSS files should be as low as possible. Even if the files have
dynamic content, once parsed on the server they should be cached in browsers just like static CSS files,
which makes them scale well.

Requirements

To enable dynamic CSS files, the spidersupport HTTP module must be defined in web.config. The module is
defined by default in standard installations.

Using Dynamic CSS Files

To make a dynamic CSS file, just create a copy of an existing style sheet file and rename it by adding the string
“_template” after the file name, for example, copy of styles.css is renamed as styles_template.css.
When a browser makes a request for a CSS file, EPiServer will intercept ASPNET’s CSS loading procedure and
check if there is a dynamic CSS file available. If it finds one, the CSS file is read, parsed and returned. If no
dynamic CSS file is found, ASPNET continues its standard CSS loading procedure.

Example:

1. We want to make a dynamic CSS file from mystyles.css, so we copy mystyles.css to
mystyles_template.css.

2. Next, a Web request comes in, asking for mystyles.css.

3. EPiServer looks if there is a dynamic CSS file and finds mystyles_template.css.

4. The dynamic CSS file is parsed and returned to the browser, who still sees the file as mystyles.css. The
CSS file has the standard MIME header and datestamp for CSS files and is cached by the browser.

Predefined CSS Tags

The syntax of a tag is “tag”, the tag name is case-insensitive. The entire expression is replaced with the actual
value runtime.

The number of predefined tags is kept to a minimum, due to security reasons. There may be more tags later, but
currently only the following ones are supported:

$RootDir$ Virtual path to the application’s root, e.g. “/EPiServerSample/”.

$UploadDir$ Virtual path to the application’s upload directory, e.g. “/upload/”.

Dynamic CSS Files | 9

Examples:

.EPEdit-tabbackground

{
 background-image:url($RootDir$Util/images/tabrow_background.gif);

}

.EPEdit-inputNumber

{

 border:solid 1px #6D8CA8;
 behavior:url($RootDir$Util/javascript/changedinput.htc);

}

Copyright © ElektroPost Stockholm AB. ElektroPost and EPiServer® are registered trademarks of ElektroPost Stockholm AB.
Other product and company names mentioned in this document may be the trademarks of their respective owners.

The document may be freely distributed in its entirety, either digitally or in printed format, to all EPiServer users. Changes to the
content or partial copying of the content may not be carried out without permission from ElektroPost Stockholm AB:

ElektroPost Stockholm AB
Finlandsgatan 38
SE-164 74 Kista
Sweden

Changes are periodically made to the document and these will be published in new editions of the document. ElektroPost
reserves the right to improve or change the products or programs included in this document at any time.

	Securing the edit and admin Directories
	Relocation of edit and admin Directories
	New Configuration Properties in web.config
	Language Keys
	Url Property in plugin Attributes
	Hardcoded Paths to edit and admin
	References to User Controls in edit/admin
	References to edit and admin Using “../”
	References to files outside edit and admin Using “../”

	Configurable HTTP Ports
	Overview
	Configuration Properties in web.config
	Requirements

	Dynamic CSS Files
	Overview
	Requirements
	Using Dynamic CSS Files
	Predefined CSS Tags

