

TECHNICAL NOTE

ASP.NET 2.0 Web Parts in EPiServer

Product version: EPiServer 4.60

Document version: 1.0

Document creation date: 11-05-2006

Purpose

ASP.NET 2.0 introduces Web Parts as a set of controls for building portal-like pages. EPiServer makes use of this
support from version 4.60 and extends it in a number of ways. This document describes the setup requirements
and outlines the features that are built into the EPiServer Web Part support.

2 | ASP.NET 2.0 Web Parts in EPiServer

Table of Contents

INTRODUCTION 2

OVERVIEW 2

TEMPLATES 3

CONFIGURATION 5

ADMINISTRATION 7

EXAMPLE 1 – DISPLAYING EPISERVER CONTENT IN A WEB PART 8

EXAMPLE 2 – DISPLAYING EPISERVER PAGE LISTINGS IN A WEB PART 14

EXAMPLE 3 – IMPLEMENT A CONNECTION BETWEEN WEB PARTS 17

FURTHER REFERENCES 20

APPENDIX – API DOCUMENTATION 21

Introduction

Web Parts is a framework for building portal-like, highly personalized pages in ASP.NET 2.0. The technology is
known from the Microsoft SharePoint product family, where it has been available for a number of years. The
release of .NET 2.0 made this technology available to ASP.NET developers not specifically targeted to
SharePoint environments. In EPiServer 4.60, which is the first release that targets ASP.NET 2.0, we use Web
Parts for our portal templates.

Overview

Web Parts are typically used for building portal-like Web applications. The framework has built-in support for
various types of customization of the user interface (personalization) and provides a number of controls to back
this up. All controls and classes defined in the framework are designed with extensibility in mind, so there are a lot
of opportunities to plug in your own code for altering things like rendering and behavior.

Templates | 3

Web Part for displaying
a list of links.

Web Part for displaying
a WSRP portlet.

Web Part for displaying
the main body of a
selected page.

Web Part for displaying
an RSS feed.

The image above displays what a Web Parts page looks like when a couple of Web Parts have been applied. The
example shows a Web Part displaying an RSS feed and a WSRP portlet in the left zone, and two Web Parts, one
for displaying a page list and one for the contents of a page in the right zone.

The Web Parts in the right zone are connected, i.e. clicking a link in the list of pages in the upper Web Part will
automatically update the Web Part below to display the content for the selected page. This view can be “private”,
where the user that is logged specifies what should be displayed on the page, or it can be a view that is shared
for all users (including anonymous users).

The page shows the Portal.aspx template, which is included in the EPiServer installation package for the Web
Part support. The installation package also includes a template for displaying a combination of traditional content
and Web Part content.

Templates

The EPiServer installation includes two templates that exemplify how to use the Web Parts features in general
and the EPiServer extensions in particular.

Portal.aspx

The portal template is used for traditional portal scenarios where all content is viewed using Web Parts. This
template supports most of the various display modes that are available on a Web Part page. The page contains
controls for switching between the different displays modes and for switching between private and shared
personalization scope.

4 | ASP.NET 2.0 Web Parts in EPiServer

The image below displays the portal template displaying the Web Part Edit user interface for the Page List Web
Part.

Modification of content,
appearance and behavior
can be done from the
various display modes.
Additional user interface
for changing settings will
show up to the right.

In this example the user
has selected Edit from the
pop-up menu of the Page
List Web Part.

Mixed.aspx

In situations where you want a traditional Web page look, but want to expose a Web Part in a section of the page,
you can make the WebPartProperty property of the ExtendedWebPartZone point to an EPiServer page
property of type WebPart. With this configuration the editor will be able to define which Web Part should be
displayed in the zone.

This feature is implemented in the Mixed.aspx template, which basically replaces the right content placeholder
with an ExtendedWebPartZone. The template expects a WebPart property named “SelectedWebPart” and a
XHTML property named “MainBody” to be defined for the page type.

The image below displays the Edit tab of EPiServer Edit mode for the "Mixed" content template. The
SelectedWebPart property is displayed as a drop-down list of available Web Parts. The set of available Web Parts
are defined in EPiServer's Admin mode.

When switching to
EPiServer Edit mode, the
WebPart property will show
a list of available Web Parts
to choose from.

Configuration | 5

The image below displays the "Mixed" content template showing the page tree in the left column, the main body in
the main content area and a Web Part in the right column.

Web Part displaying an RSS
feed.

Main content and the
navigation displayed in the
same way as you see in the
Ordinary Web Page
template.

Configuration

This chapter outlines the various aspects concerning the configuration of Web Parts support.

Install ASP.NET 2.0

In order to use and develop pages with Web Part support in EPiServer, the site must be running on .NET 2.0. The
steps required to set this up are described in the technical note "WSRP Configuration".

Sample Package

There are two options if you want to use Web Parts in your site.

1. Install the entire template package for ASP.NET 2.0.

2. If you are upgrading an existing site, you may want to manually install the files required just for Web
Parts. See a list of the files below.

The sample templates for ASP.NET 2.0 contain the following crucial files that must exist for Web Parts to work.

• /admin/webpartadmin.aspx

• /admin/webpartadminedit.aspx

• /bin/episerver.webparts.dll

• /templates/masterpages/masterpage.master

• /templates/webparts/mixed.aspx

• /templates/webparts/mixed.aspx.cs

• /templates/webparts/portal.aspx

6 | ASP.NET 2.0 Web Parts in EPiServer

• /templates/webparts/portal.aspx.cs

• /templates/webparts/portal.aspx.designer.cs

• /templates/webparts/scripts/rss.js

• /templates/webparts/units/rsscontrol.ascx

• /templates/webparts/units/rsscontrol.ascx.cs

• /templates/webparts/units/rsscontrol.ascx.designer.cs

• /templates/webparts/webcontrols/rsszone.cs

web.config

In order to make the database available for the Web Parts framework, the database connection string needs to be
published in the ASP.NET 2.0 connectionsStrings element. Follow the instructions below to configure
web.config.

1. Add the following element as a child element to the configuration element.
 <connectionStrings>

 <add name="EPiServerDB" connectionString="Data
Source=SERVER;Database=DATABASE;User Id=USER;Password=PASSWORD;Network
Library=DBMSSOCN;" providerName="System.Data.SqlClient" />

 </connectionStrings>

2. Replace SERVER, DATABASE, USER and PASSWORD with your values.
Make sure that the Web Parts tag prefix is registered in the pages element.

 <pages validateRequest="false" enableEventValidation="false">

 <controls>

 <add tagPrefix="EPiServer" namespace="EPiServer.WebControls"
assembly="EPiServer" />
 <add tagPrefix="WebParts" namespace="EPiServer.WebParts.WebControls"
assembly="EPiServer.WebParts" />
 <add tagPrefix="WebParts"
namespace="EPiServer.WebParts.WebControls.Wsrp" assembly="EPiServer.WebParts"
/>

 </controls>

 </pages>

3. The personalization default engine used for extracting and persisting personalized data is the
SqlPersonalizationProvider. EPiServer uses an altered version of the
SqlPersonalizationProvider named EPiServerPersonalizationProvider which handles
the multiple pages per page template model used in EPiServer. You enable this personalization provider
by adding the following element somewhere inside the system.web element.
 <webParts>

 <personalization defaultProvider="EPiServerPersonalizationProvider">

 <providers>

 <add name="EPiServerPersonalizationProvider"
type="EPiServer.WebParts.Core.EPiServerPersonalizationProvider"
connectionStringName="EPiServerDB" />

 </providers>

 <authorization>

 <allow verbs="enterSharedScope" roles="WebAdmins, WebEditors,
Administrators" />

 </authorization>

 </personalization>

 </webParts>

Administration | 7

4. Make sure to point out the correct connection string in the connectionStringName attribute of the
add element. The section above also sets the permission for entering shared scope to only allow
WebAdmins and WebEditors.

Configuring the Database

The personalization provider relies on a specific database schema. This schema can easily be set using the
aspnet_regsql command line tool found in %windir%\Microsoft.NET\Framework\v2.0.50727\. This
tool can be used to set up specific parts or the entire database schema necessary for the available ASP.NET 2.0
providers (membership, roles, personalization, profiles and Web events).

The following command enables the entire ASP.NET 2.0 scheme using SQL authentication:

aspnet_regsql /S SERVER /d DATABASE /U USER /P PASSWORD /A all

The following command does the same thing using integrated security:

aspnet_regsql /S SERVER /d DATABASE /E /A all

The following command installs the minimum parts necessary for the Web Parts support, i.e. personalization and
membership. The example uses integrated security:

aspnet_regsql /S SERVER /d DATABASE /E /A mc

Administration

Web Part Registration

In order to make it possible to change the set of available Web Parts in a live site, there is a new administration
page for registering and altering Web Parts. Web Parts that have been registered are available from the custom
WebPart property that can be added to a page type. It is also available from the RegisteredWebPartsCatalog that
can be added to any catalog zone in the EPiServer site. The registration process makes it possible to extend the
available services of the site without having to recompile or even change any markup files.

Register a Web Part

1. From the Config tab in Admin mode, click Web Parts and Install Web Part.

2. Enter a name, description and specify the control to be used by entering its physical path relative to the
application root. You specify the application root using the tilde character (~). Enter
"~/templates/webparts/units/rsscontrol.ascx" in the Control field to point to the RSS control available in
the sample package. Click Save.

3. You can specify properties of the Web Part by selecting its name.

4. In the properties table, enter values for the properties you need to specify.

8 | ASP.NET 2.0 Web Parts in EPiServer

5. The Src property of the RssControl in the above example is set to point to the MSDN feed at
http://msdn.microsoft.com/rss.xml.

6. Click Add to define the property.

7. Remove any property by selecting Delete in the table.

Register a WSRP Portlet

If you need to expose WSRP portlets, you can make them available by registering them in a similar way.

1. From the WebParts page in Admin mode, select Consume Portlet.

2. Enter a name and a description. Select one of the producers registered in the WSRP Sources section of
Admin mode in the Producer field.

3. Select one of the available portlets for the selected producer. Click Save.

Example 1 – Displaying EPiServer Content in a Web Part

This example shows how to build a simple Web Part for displaying EPiServer content. The idea is to display a
configurable property from a configurable page.

Derive from a Web Part?

In ASP.NET 2.0 there are three main choices when selecting a base class for a Web Part control.

1. Deriving from System.Web.UI.WebControls.WebParts.WebPart will give you a tight integration with
the Web Part framework. The (major) drawback is that you must provide the markup of your control
using code.

2. Deriving from System.Web.UI.WebControls.UserControl gives you the possibility to separate code
and layout, but you will not have all the features of Web Part deriving control. Most of the features can be
“re-engineered”.

3. Derive from any other member of the System.Web.UI.WebControls namespace, or any other Web
control. You do this to extend or customize an existing control.

http://msdn.microsoft.com/rss.xml

Example 1 – Displaying EPiServer Content in a Web Part | 9

The example uses markup to define the layout, so we create a new user control and name it PropertyPart.ascx.

Markup

The markup for the control is trivial.

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="PropertyPart.ascx.cs"
 Inherits="EPiServerSample.WebParts.PropertyPart" %>

<asp:Label runat="server" ID="Message" Visible="false" Font-Bold="true" />

<EPiServer:Property runat="server" PropertyName="" ID="PropertyControl" />

Note that the @Control declaration still contains a code-behind file, although the code is targeted for
ASP.NET 2.0. This is because the control is created in a Web Application Project which is how the sample
project for ASP.NET 2.0 is packaged.

In the markup we simply add two control declarations; a Label for displaying messages and a Property control for
displaying the EPiServer content.

Code-Behind File

Code view will look something like this:

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

namespace EPiServerSample.WebParts

{

 public partial class PropertyPartEx : System.Web.UI.UserControl

 {

 private string _url;

 private EPiServer.Core.PageData _pageData;

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 }

}

There is also a way to specify which page and property to display. There are two new properties for this: Url and
PropertyName.

 [Personalizable]

 [WebBrowsable]

 [WebDisplayName("Url/Page ID")]

 public string Url

 {

http://webproject.scottgu.com/

10 | ASP.NET 2.0 Web Parts in EPiServer

 get { return _url; }

 set {

 _url = value;

 }

 }

 [Personalizable]

 [WebBrowsable]

 public string PropertyName

 {

 get { return PropertyControl.PropertyName; }

 set { PropertyControl.PropertyName = value; }

 }

In the code above, the Personalizable attribute is used to let the Web Part framework know that the data in
this property should be persisted in the personalization for the page where the Web Part is used. The
WebBrowsable attribute makes the property available for user editing when the page is displayed in Web Part
Edit mode. The WebDisplayName sets the caption of the property when displayed in Edit mode.

The default behavior displays the property name. The declaration of the WebDisplayName requires a constant
expression for the DisplayName argument, but what if you want to provide a translated text? To do this you need
to extend the WebDisplayName by deriving from it and provide an overridden version of the DisplayName
property that returns a translated text.

The PropertyName property just wraps the PropertyName property of the contained EPiServer Property
control in order to hook up the personalization engine with its value. The URL is stored in a field since it needs
some extra attention before we can use it.

The Property control we added in the markup expects a PageReference in order to display any content. For this
we need a way to transform the URL provided by the user into a PageReference object. This is done by adding
another read-only property named PageData.

public EPiServer.Core.PageData PageData

{

 get

 {

 if (_pageData == null && Url != null)

 {

 try

 {

 int id;

 if (Int32.TryParse(Url, out id))

 {

 _pageData =
 EPiServer.Global.EPDataFactory.GetPage(
 new EPiServer.Core.PageReference(id));

 }

 else

 {

 _pageData =
 EPiServer.Global.EPDataFactory.GetPageByURL(
 _url);

 }

 }

 catch (EPiServer.Core.PageNotFoundException x)

 {

 /* Error processing */

 }

Example 1 – Displaying EPiServer Content in a Web Part | 11

 }

 return _pageData;

 }

}

This property uses a field, _pageData, to cache its calculated value, so if the field is set to anything other than
null, the field value is returned. If however the field is null, we need to create an instance based on the value given
by Url. In our case we accept the value to be a relative URL to a page in the site or an integer representing the
page ID. So when calculating the _pageData value, we first make an attempt to parse it as an integer using the
new convenient TryParse method. If this succeeds, we simply retrieve a reference to the page using the
GetPage API. If the URL was not in numeric format, we use GetPageByUrl to look up the page using its relative
URL. We skip the error handling code that is needed to handle lookup failures.

Now everything is set up to feed the Property control with a page reference. We do this by overriding the
OnPreRender method.

protected override void OnPreRender(EventArgs e)

{

 if (PageData != null)

 {

 PropertyControl.PageLink = PageData.PageLink;

 }

 base.OnPreRender(e);

}

The simplest way to expose this Web Part in your site is to register it in Admin mode. By doing this, the Web Part
will be available from the Registered Web Parts catalog in the Portal template. Registration is done by entering
"~/WebParts/PropertyPart.ascx" in the Control field in the Install Web Part window in Admin mode.

When you browse a page that uses the Portal template and switch display mode to Catalog mode, you will see
the EPiServer Property under the Registered Web Parts as follows. When it is added to the LeftZone, it will look
something like this:

If you switch to Edit mode and select Edit from the pop-up control menu of the Web Part, you will see the user
interface for modifying the Web Part.

12 | ASP.NET 2.0 Web Parts in EPiServer

Enter a property name (MainBody in this case), the path to a page in your site, e.g.
/EPiServerSample/Inspiration/News/The_New_Support_for_Globalisation/, click OK and the Web Part will render
the main body of the specified page.

You might notice that the result you get differs slightly from the page shown above. Instead of getting the name of
the page in the Web Part title bar, you get the less informative “Untitled”. This is because in the example above
the control implements the IWebPart interface, which gives the Web Part framework some additional information
on how to render standard elements as icons and titles. The implementation is very simple.

In your class add the following to the class declaration.

…

public partial class PropertyPart : System.Web.UI.UserControl, IWebPart

{

…

If this is done in Visual Studio 2005, you will receive a smart tag giving you the option to implement the interface
you just added.

A typical implementation will look something like this.

// IWebPart backing variables

private string _title;

private string _catalogIconImageUrl;

Example 1 – Displaying EPiServer Content in a Web Part | 13

private string _description;

private string _subtitle;

private string _titleIconImageUrl;

private string _titleUrl;

#region IWebPart Members

public string CatalogIconImageUrl

{

 get { return _catalogIconImageUrl; }

 set { _catalogIconImageUrl = value; }

}

public string Description

{

 get { return _description; }

 set { _description = value; }

}

public string Subtitle

{

 get { return _subtitle; }

 set { _subtitle = value; }

}

[Personalizable]

public string Title

{

 get

 {

 if (_title == null && PageData != null)

 return PageData.PageName;

 else

 return _title;

 }

 set

 {

 if (value == string.Empty)

 _title = null;

 else if (PageData != null && value != PageData.PageName)

 _title = value;

 }

}

public string TitleIconImageUrl

{

 get { return _titleIconImageUrl; }

 set { _titleIconImageUrl = value; }

}

public string TitleUrl

{

 get

14 | ASP.NET 2.0 Web Parts in EPiServer

 {

 if (PageData == null) return _titleUrl;

 return PageData.LinkURL;

 }

 set { _titleUrl = value; }

 }

 #endregion

The only thing that we treat differently than just getting and setting the value of a field variable is the
implementation of Title and TitleUrl. Title checks its corresponding field variable for null and if that is the
case attempts to retrieve the page name from the PageData property. Likewise, TitleUrl is simply the
LinkUrl property of the PageData property.

Example 2 – Displaying EPiServer Page Listings in a Web Part

In this example we will build a Web Part that lists pages from a specified location of the site tree. Each page will
be represented with a link to the page.

First add a new Web User Control to your project named PageListPart.ascx.

Markup

In the markup, add a PageList control that puts out link buttons as follows.

<EPiServer:PageList runat="server" ID="PageList">

 <ItemTemplate>

 <asp:LinkButton runat="server"
 ID="LinkButton"
 OnCommand="PageClick_Command"
 CommandArgument="<%# Container.CurrentPage.PageLink.ID %>">
 <%# Container.CurrentPage.PageName %>
 </asp:LinkButton>

 </ItemTemplate>

</EPiServer:PageList>

In this code we could have replaced the LinkButton with a standard HTML anchor element, but in the next
example we will add extra processing in the event handler. This means that we are dependent on a postback, so
we use the slightly more complicated LinkButton server control.

Code-Behind

The markup will require a collection of pages as a data source and it will also need an event handler for the
PageClick_Command.

In the code-behind we add the following members.

private string _url;

private EPiServer.Core.PageData _pageData;

private string _pageDataUrl;

private string _boundUrl;

[Personalizable]

[WebBrowsable]

Example 2 – Displaying EPiServer Page Listings in a Web Part | 15

[WebDisplayName("Url/Page ID")]

public string Url

{

 get { return _url; }

 set { _url = value; }

}

public EPiServer.Core.PageData PageData

{

 get

 {

 if (IsDirty && Url != null)

 {

 try

 {

 int id;

 if (Int32.TryParse(Url, out id)) {

 _pageData = EPiServer.Global.EPDataFactory.GetPage(
 new EPiServer.Core.PageReference(id));
 }

 else {

 _pageData =
 EPiServer.Global.EPDataFactory.GetPageByURL(Url);
 }

 _pageDataUrl = Url;

 }

 catch (EPiServer.Core.PageNotFoundException x)

 {

 /* Handle the error! */

 }

 }

 return _pageData;

 }

}

As you can see, we use (almost) the same properties as in the previous example for Url and PageData. The only
difference is in PageData, where we need “dirty”-handling of the provided Url. In the previous example it was ok
to bind the data to the property control as late as in the OnPreRender override, where we could be certain that
the data available was the correct data.

In this case we must bind the data earlier since the rendered control will contain server controls that should cause
event handlers to execute. In order for these postbacks to work, the controls must be recreated prior to where the
postback handling occurs. The thing is that when a user changes the Url from the edit user interface, the change
happens after the data is bound. In case this happens we need to rebind before rendering the content.

Below is the IsDirty property, the override of OnLoad, where the initial data binding occurs, and the
OnPreRender override, where we make a conditional rebind.

private bool IsDirty

{

 get { return _pageDataUrl != Url; }

}

protected override void OnLoad(EventArgs e)

{

 // need to bind data before any event handling takes place
 // ... or it will never take place.

 BindData();

16 | ASP.NET 2.0 Web Parts in EPiServer

 base.OnLoad(e);

}

protected override void OnPreRender(EventArgs e)

{

 // if the url has changed after the control
 // was initially bound we need to rebind.

 if (_boundUrl != Url)

 {

 BindData();

 }

 base.OnPreRender(e);

}

private void BindData()

{

 if (PageData != null)

 {

 PageList.DataSource =
 EPiServer.Global.EPDataFactory.GetChildren(PageData.PageLink);

 PageList.DataBind();

 _boundUrl = Url;

 }

}

Finally we have the event handler for the LinkButton postback. In this version we just construct a PageData
object to retrieve its LinkUrl property. We use this URL to redirect the client.

protected void PageClick_Command(object sender, CommandEventArgs e)

{

 EPiServer.Core.PageData child =
 EPiServer.Global.EPDataFactory.GetPage(new
 EPiServer.Core.PageReference(_selectedPageId));

 Response.Redirect(child.LinkURL, true);

}

The Result

Compile the code and add and register the Web Part as described in the previous example. When added to the
page and given a URL using the Edit mode, the Web Part should look something like this:

Example 3 – Implement a Connection between Web Parts | 17

Example 3 – Implement a Connection between Web Parts

In a sense the previous examples show master/detail view of EPiServer page information. It would be useful if
these two Web Parts could interact so that selecting a link in the page list Web Part will update the property Web
Part with a new page reference. There is a mechanism called Web Part Connections that can help you
accomplish this functionality.

This example shows you how to implement a connection between the Web Parts created in the previous
examples. The idea is to let the content Web Part created in the first example be fed with its page context by the
page list, so that when a user selects a link in the page list Web Part, the content Web Part is updated to display
new content.

Connection Interface

Connections are implemented by defining a provider and a consumer of a common connection interface. The
connection interface defines the methods that the consumer can call in order to retrieve data from the connection.
In our case the interface is very simple, since its only purpose is to serve a page ID of the page that was selected
in the page list.

public interface IPageProvider

{

 int GetPageId();

}

The implementation of PageProvider is very simple and only acts as an information carrier.

public class PageProvider : IPageProvider

{

 private int _pageId;

 public PageProvider(int id)

 {

 _pageId = id;

 }

 public int GetPageId()

 {

 return _pageId;

 }

}

Connection Provider

In the page list we need to add a connection provider method that looks like this.

[ConnectionProvider("Page Connection")]

public IPageProvider GetProvider()

{

 return new PageProvider(_selectedPageId);

}

The purpose of the provider method is to serve an instance of an object that implements the connection interface
whenever the Web Part framework asks for it. This method must be tagged with the

18 | ASP.NET 2.0 Web Parts in EPiServer

ConnectionProviderAttibute attribute for the framework to know which method to call. The display name
argument of the attribute is only used for rendering the user interface.

We also need to add code that sets the _selectedPageId that is used to instantiate the PageProvider
instance and we do that by changing the event handler for the LinkButton control to look like this.

protected void PageClick_Command(object sender, CommandEventArgs e)

{

 _selectedPageId = Int32.Parse((string)e.CommandArgument);

 if (! IsConnected)

 {

 EPiServer.Core.PageData child =
 EPiServer.Global.EPDataFactory.GetPage(new
 EPiServer.Core.PageReference(_selectedPageId));

 Response.Redirect(child.LinkURL, true);

 }

}

We simply store the selected ID in a field for use in the connection provider method. We also need to put a
condition on the redirect statement, so that it only occurs if the Web Part not is connected. The IsConnected
property iterates through all existing connections to see if the current Web Part is part of any connection by
checking the ID of the provider.

private bool IsConnected

{

 get {

 WebPartManager manager =
 WebPartManager.GetCurrentWebPartManager(this.Page);

 foreach (WebPartConnection connection in manager.Connections)

 {

 if (connection.ProviderID == this.ID) return true;

 }

 return false;

 }

}

That is all we need to do on the provider side.

Connection Consumer

In the consumer Web Part we need to add a connection consumer method in order to be fed with data from a
connection. The consumer method must be tagged with the ConnectionConsumerAttribute attribute to
make it visible for the Web Part framework. This is the implementation.

[ConnectionConsumer("Page Connection")]

public void SetProvider(IPageProvider provider)

{

 _pageProvider = provider;

}

We simply store the passed page provider for later use.

In order to make the control render the correct information, we need to update the PageData property to also
handle the case, where we receive information from a connection. The changed PageData property looks like
this.

public EPiServer.Core.PageData PageData

{

 get {

 if (IsDirty) {

Example 3 – Implement a Connection between Web Parts | 19

 if (IsConnected &&
 _pageProvider.GetPageId() != 0 &&
 (_pageData == null ||
 _pageData.PageLink.ID != _pageProvider.GetPageId()))

 {

 _pageData =
 EPiServer.Global.EPDataFactory.GetPage(
 new EPiServer.Core.PageReference(
 _pageProvider.GetPageId()));

 _pageDataUrl = _pageProvider.GetPageId().ToString();

 Url = _pageDataUrl;

 }

 else if (Url != null) {

 try {

 int id;

 if (Int32.TryParse(Url, out id)) {

 _pageData =
 EPiServer.Global.EPDataFactory.GetPage(
 new EPiServer.Core.PageReference(id));

 }

 else {

 _pageData =
 EPiServer.Global.EPDataFactory.GetPageByURL(
 _url);

 }

 _pageDataUrl = Url;

 }

 catch (EPiServer.Core.PageNotFoundException x) {

 /* Handle the error! */

 }

 }

 }

 return _pageData;

 }

}

In the above code, we firstly do a dirty check similar to the one we have in the page list Web Part. If the page data
is dirty, we need to update it.

First of all we check to see if there is an active connection to get page information from. If that is the case, we
retrieve a PageData object from EPiServer given the page ID provided by the PageProvider implementation. If
the Web Part is unconnected, the processing proceeds as with the code that we had before, where we look up the
page using GetPage or GetPageByUrl. The dirty handling requires an update of the _pageDataUrl field that
is supposed to be synchronized with the currently available page data object.

The IsDirty property looks like this.

private bool IsDirty

{

 get { return
 _pageData == null ||
 (_pageDataUrl != Url) ||
 (IsConnected &&
 _pageProvider.GetPageId() != _pageData.PageLink.ID);
 }

}

Here we consider the data to be dirty if the data is missing, if the URL for the current data is different than the
provided URL, or if there is an active connection and the page ID given by that connection is different from the
page ID of the current page data.

20 | ASP.NET 2.0 Web Parts in EPiServer

That is all we need to change on the consumer side.

The Web Parts in Action

Compile this code and browse the portal page. If you have done the two first examples you will not need to do any
new registration.

In the portal page you can now select Connect in the display mode drop-down list and then Connect from the
control menu in the page list Web Part. (A connection can be initiated from the consumer or the provider side.)
The connection zone will appear giving you the option to create a connection for the Web Part by selecting a link.
After this a select box will appear that lists all Web Parts that can provide data for you or all Web Parts that can
consume data that you provide. In this case the list will only contain the property part represented by its title
caption. Select the Web Part and then select Connect and the connection should be activated. Test it by
selecting a link in the page list.

The above image shows how the page will appear after the connection has been initiated and the “Blogs” link has
been selected.

Further References

Further reading on Web Parts

• WebParts: From SharePoint to ASP.NET 2.0, Dino Esposito
http://www.theserverside.net/articles/showarticle.tss?id=WebParts1

• Personalize Your Portal with User Controls and Custom Web Parts
http://msdn.microsoft.com/msdnmag/issues/05/09/WebParts/default.aspx

• Web Parts Control Set Overview
http://msdn2.microsoft.com/en-us/library/k3w2y2tf.aspx

• ASP.NET Web Parts Overview
http://msdn2.microsoft.com/en-us/library/hhy9ewf1.aspx

• ASP.NET Web Parts Pages
http://msdn2.microsoft.com/en-us/library/e0s9t4ck.aspx

Further reading on WSRP

• WSRP Primer
http://www.oasis-open.org/committees/download.php/10539/wsrp-primer-1.0.html

http://www.theserverside.net/articles/showarticle.tss?id=WebParts1
http://www.theserverside.net/articles/showarticle.tss?id=WebParts1
http://msdn.microsoft.com/msdnmag/issues/05/09/WebParts/default.aspx
http://msdn2.microsoft.com/en-us/library/k3w2y2tf.aspx
http://msdn2.microsoft.com/en-us/library/hhy9ewf1.aspx
http://msdn2.microsoft.com/en-us/library/e0s9t4ck.aspx
http://www.oasis-open.org/committees/download.php/10539/wsrp-primer-1.0.html

HAppendix – API Documentation | 21

Appendix – API Documentation

EPiServer WebPart Controls

This section will move to EPiServer SDK as soon as the documentation system supports .NET 2.0 assemblies.

EPiServer.WebParts.WebControls.ExtendedWebPartManager

ExtendedWebPartManager replaces the WebPartManager control from the
System.Web.UI.WebControls.WebParts namespace on pages where the MaximizedWebPartZone is to be
used.

In addition to members of the WebPartManager, this control defines the following public properties.

Property / Method Description

MaximizedZoneId Gets or sets the ID of the zone that acts as the maximized Web Part
zone.

SoloZoneId Gets or sets the ID of the zone that acts as the solo Web Part zone

MaximizedZone Gets the control instance of the zone that acts as the maximized
zone.

SoloZone Gets the control instance of the zone that acts as the solo zone.

EPiServer.WebParts.WebControls.ExtendedWebPartZone

ExtendedWebPartZone derives from the WebPartZone control from the
System.Web.UI.WebControls.WebParts namespace and adds support for Maximize and Solo by defining two
custom verbs. This control also adds support for the EPiServer WebPart property. ExtendedWebPartZone can
only be placed on pages that has ExtendedWebPartManager.

The following public or protected properties are defined or overridden by the ExtendedWebPartZone.

Property Description

ExtendedWebPartManager Gets ExtendedWebPartManager on the current page. This
property is protected.

MaximizeVerb Gets a reference to a WebPartVerb object that enables end users
to maximize Web Part controls in a zone.

SoloVerb Gets a reference to a WebPartVerb object that enables end users
to display a Web Part control in Solo mode.

WebPartProperty Gets or sets the property name of a WebPartProperty to be used
for rendering the current zone content. If this property is set, any
personalized content will be replaced with the Web Part that is
selected for the WebPartProperty.

The following public events are defined by ExtendedWebPartZone.

Event Description

WebPartMaximize Occurs when a Web Part is about to be maximized.

WebPartRestore Occurs when a Web Part is about to be restored.

22 | ASP.NET 2.0 Web Parts in EPiServer

WebPartMinimize Occurs when a Web Part is about to be minimized.

WebPartEdit Occurs when a Web Part is about to be edited.

WebPartDelete Occurs when a Web Part is about to be deleted.

WebPartClose Occurs when a Web Part is about tot be closed.

WebPartConnect Occurs when a Web Part is about to be connected.

The following protected methods have been overridden by ExtendedWebPartZone.

Method Description

OnCreateVerbs Overridden to provide custom verbs for Maximize and Solo.

CreateInitialWebParts This method handles the WebPartProperty configuration. If
WebPartProperty is set, this control attempts to initialize an
instance of the configured Web Part.

CloseWebPart

ConnectWebPart

DeleteWebPart

EditWebPart

MinimizeWebPart

RestoreWebPart

Overridden to expose the corresponding event.

EPiServer.WebParts.WebControls.MaximizedWebPartZone

This is a zone that can act as a Maximize or Solo zone on a Web Part page. A page with support for maximize
must contain an ExtendedWebPartManager, at least one ExtendedWebPartZone and a
MaximizedWebPartZone. When this configuration is set up, Web Parts placed in the ExtendedWebPartZone
will have a Maximize verb present in its list of verbs.

The MaximizedWebPartZone control extends System.Web.UI.WebControls.WebParts with the following
public properties:

Property Description

RestoreMaximizedVerb Gets a reference to a WebPartVerb object that enables end users
to restore a maximized Web Part control.

RestoreZoneIndex Gets the order index that the currently maximized Web Part has in
its normal (restored) state.

RestoreZone Gets the zone that the currently maximized Web Part belongs to in
its normal (restored) state.

RestoreHeight Gets the height that the currently maximized Web Part has in its
normal (restored) state.

RestoreWidth Gets the width that the currently maximized Web Part has in its
normal (restored) state.

This control defines the following public event::

Event Description

RestoreMaximized Occurs when a Web Part is about to be restored to its normal state.

The following protected methods are defined or overridden:

Method Description

HAppendix – API Documentation | 23

OnCreateVerbs Overridden to provide a custom restore verb.

OnRestoreMaximized Fires the RestoreMaximized event.

OnLoad Overridden.

MaximizeWebPart Maximizes a Web Part in the current page.

SetRestoreState Stores information about a Web Part to be retrieved when the Web
Part is restored to its normal state.

RestoreWebPart Overridden to restore the currently maximized Web Part to its
normal state.

EPiServer.WebPart.WebControls.RegisteredWebPartCatalog

This Web Part catalog lists all registered Web Parts in the application. Place this control in a catalog zone to let
users add instances of registered Web Parts.

The following public methods are overridden in this control:

Method Description

GetAvailableWebPartDescriptions Returns WebPartDescriptionCollection containing
information about all registered Web Parts.

GetWebPart Returns a Web Part instance of specified by a
WebPartDescription.

EPiServer.WebParts.WebControls.RssControl

A data-bound control that allows rendering of an RSS feed using templates for the channel element and for the
feed entries. In order to use this control you must provide markup templates since the control has no built-in
layout.

The following example renders the channel title and the top five item titles:

<WebControls:RssControl runat="server" ID="MyRss" ItemCount="5"
EnableViewState="false">

 <ChannelTemplate>

 <h2><%# Container.Title %></h2>

 </ChannelTemplate>

 <ItemTemplate>

 <a href='<%# Container.Link %>'><%# Container.Title %>

 </ItemTemplate>

</WebControls:RssControl>

The following public properties are defined in RssControl:

Properties Description

Doc Gets XmlDocument for the currently specified feed.

NamespaceManager Gets XmlNamespaceManager that is used for querying the XML
document for the current feed.

ItemCount Gets or sets the number of items that should be displayed from the
current feed.

Src Gets or sets the URL to the feed that should be displayed.

ChannelTemplate Gets or sets System.Web.UI.ITemplate that defines how the
channel element of the feed is displayed.

ItemTemplate Gets or sets System.Web.UI.ITemplate that defines how item

24 | ASP.NET 2.0 Web Parts in EPiServer

elements of the feed are displayed.

Title Gets the title of the feed.

The following methods are defined or overridden in this control:

Methods Description

CheckSrc Checks the response returned from a URL and makes sure that it is
of type “text/xml”. If not, this method returns false; otherwise true.

OnDataBinding Overridden to create child controls.

CreateChildControls Overridden to instantiate ChannelTemplate and ItemTemplate
for the bound data source.

OnPreRender Overridden to bind data prior to the rendering phase.

EPiServer.WebParts.WebControls.DisplayModeDropDown

This is a drop-down control that lets a user switch Web Part display mode on the current page.

The following public properties are defined in this class:

Property Description

Manager Gets an object reference to the current WebPartManager instance.

This control overrides the following protected methods:

Method Description

OnLoad Overridden to populate available display mode items.

OnSelectedIndexChanged Overridden to change display mode when selected index changes.

EPiServer.WebParts.WebControls.ScopeDropDown

This control lets a user change personalization scope. The available values are User and Shared personalization
scope. In order to change the personalization scope to shared scope the user must have that specific permission.
This is can be configured for specific users or roles in web.config under
configuration/system.web/webParts/authorization.

The following public properties are defined in this class:

Property Description

SelectedScope Gets a PersonalizationScope representing the currently
selected scope.

WebPartManager Gets an object reference to the current WebPartManager instance.

The following protected methods are overridden by this class:

Method Description

OnLoad Overridden to populate available scope items.

OnSelectedIndexChanged Overridden to set the personalization scope when the selected
index changes.

EPiServer.WebParts.WebControls.ScopeCheckBox

This control lets a user switch between User and Shared personalization scope by selecting and unselecting a
check box.

HAppendix – API Documentation | 25

The following public properties are defined in this class:

Property Description

WebPartManager Gets an object reference to the current WebPartManager instance.

The following protected methods are overridden by this class:

Method Description

OnCheckedChanged Overridden to set the personalization scope when the checked state
changes.

EPiServer.WebParts.WebControls.Wsrp.PortletCatalogPart

Provides a catalog that contains portlets from all registered WSRP producers in the application. The catalog
displays a drop-down control that lists all registered WSRP producers. All portlets available from the currently
selected producer are listed below.

PortletCatalogPart defines the following public properties.

Property Description

PortletManager Gets an object reference to the current PortletManager instance.

The following public and protected methods are overridden by this class:

Method Description

GetAvailableWebPartDescriptions Returns WebPartDescriptionCollection containing
information about all portlets available from the currently selected
producer.

GetWebPart Returns a Web Part instance specified by WebPartDescription.

CreateChildControls Overridden to provide a custom user interface for this catalog.

EPiServer.WebParts.WebControls.Wsrp.PortletManager

This class serves as the central control for pages exposing WSRP portlets, managing all interactions between
WsrpWebParts and the underlying infrastructure.

The PortletManager control defines the following public properties.

Property Description

ConsumerContextInitialized Gets a value indicating if the ConsumerContext instance has
been initialized.

GlobalParameters Gets a dictionary that can be used to pass variables that should be
available across blocking interaction roundtrips.

HasPageId Gets a value indicating if the current request has a PageId
parameter present on the query string.

PageId Gets the PageId parameter from the query string.

The following public and protected methods are overridden by this class:

Method Description

AddPortlet (2 overloads) Adds a portlet instance defined by a producerId and a
portletHandle to the current page. The second overload makes
it possible to pass a specific windowId to be used for the portlet
instance.

26 | ASP.NET 2.0 Web Parts in EPiServer

ChangePortletWindowMode (2
overloads)

Changes the window mode on a specific portlet defined by
WindowId or a PortletWindowSession object.

Available modes are:

• "wsrp:view"

• "wsrp:edit"

• "wsrp:help"

• "wsrp:preview"
ChangePortletWindowState (2
overloads)

Changes the window state on a specific portlet defined by a
windowId or a PortletWindowSession object.

Available states are:

• "wsrp:normal"

• "wsrp:minimized"

• "wsrp:maximized"

• "wsrp:solo"

ContainsWindowId Returns a value indicating if the provided windowId is present in
the current page.

CreateClienPage Creates a new ClientPage instance as a child of a specified
parent with a specific name.

GetClientPage Returns a ClientPage instance based on the passed page name.
If there is no page matching the name a new instance is created
using the CreateClientPage method.

GetClientPageName Returns a normalized page name of the name passed. Override this
method to provide your own normalization.

GetCurrentPortletManager Static method that returns an object reference to the current
PortletManager object. This method can only be called in a page
context.

GetMarkupType Returns the HTML MarkupType for the provided windowId.

GetPortlet Returns an IWsrpPortlet for the provided windowId.

GetPortletDriver Returns an IPortletDriver for the provided windowId.

GetPortletKey Returns an IPortletKey for the provided windowId.

GetPortletWindowSession Returns an IPortletWindowSession for the provided
windowId.

GetSupportedModes Returns an array containing supported window modes for the
provided windowId.

GetSupportedWindowStates Returns an array containing supported window states for the
provided windowId.

GetWindowId Gets the windowId for the first matching portlet having the
provided producerId and portletHandle.

GetWsrpPortlet Returns an IWsrpPortlet for the provided windowId.

HandleWsrpClick This method handles all WSRP link clicks and dispatches to
different APIs of the underlying infrastructure based on the query
string variables.

WSRP form posts are handled by the PortletDataControl.

OnBeforePortletInteraction Raises the BeforePortletInteraction event.

OnInit Overridden to initialize the consumer context object.

HAppendix – API Documentation | 27

OnLoad Overridden to initialize Error handler and to handle user
interactions.

OnUnload Overridden to persist any unsaved data.

PerformPortletInteraction (2
overloads)

Requests a portlet interaction on the portlet specified by windowId
or a windowSession object. The query and form parameters are
passed as interaction parameters.

RemovePortlet Removes the portlet specified by windowId from the current page.

The PortletManager class defines the following public events:

Event Description

BeforePortetlInteraction Occurs before a portlet interaction roundtrip is about to be
performed.

EPiServer.WebParts.WebControls.Wsrp.WsrpWebPart

This is a Web Part class that wraps a WSRP portlet by rendering the portlet using PortletDataControl. This
control can be instantiated dynamically using PortletCatalogPart or RegisteredWebPartCatalog.

This control defines the following public properties:

Property Description

CustomVerbs Gets a WebPartVerbCollection containing the custom verbs
available for WSRP portlets.

IsEdit Gets a value indicating if the portlet is in edit mode.

IsHelp Gets a value indicating if the portlet is in help mode.

IsMaximized Gets a value indicating if the portlet is in maximized state.

IsMinimized Gets a value indicating if the portlet is in minimized state.

IsNormal Gets a value indicating if the portlet is in normal state.

IsPreview Gets a value indicating if the portlet is in preview mode.

IsSolo Gets a value indicating if the portlet is in solo state

IsView Gets a value indicating if the portlet is in view mode.

Portlet Gets an IWsrpPortlet instance for the current portlet.

PortletData Gets the PortletData control used for rendering the portlet
content.

PortletManager Gets an object reference to the current PortletManager object.

PortletMode Gets the window mode for the current portlet.

Supported modes are:

• Edit

• View

• Help

• Preview

SupportsEdit Gets a value indicating if the portlet supports edit mode.

SupportsHelp Gets a value indicating if the portlet supports help mode.

SupportsMaximized Gets a value indicating if the portlet supports maximized state.

SupportsMinimized Gets a value indicating if the portlet supports minimized state.

28 | ASP.NET 2.0 Web Parts in EPiServer

SupportsNormal Gets a value indicating if the portlet supports normal state.

SupportsPreview Gets a value indicating if the portlet supports preview mode.

SupportsSolo Gets a value indicating if the portlet supports solo state.

SupportsView Gets a value indicating if the portlet supports view mode.

Title Overridden to provide the title of the portlet..

Verbs Overridden to provide additional custom verbs for Edit Portlet and
View.

WindowId Gets the WindowId for the currently portlet.

WindowSession Gets the WindowSession object for the current portlet.

WindowState Gets the window state of the current portlet

Possible states are:

• Normal

• Minimized

• Maximized

• Solo

WsrpEditVerb Gets a reference to a WebPartVerb object (that enables users to
change the portlet to edit mode.

WsrpViewVerb Gets a reference to a WebPartVerb object that enables users to
change portlet to view mode.

The following public or protected methods are defined or overridden by the WsrpWebPart class:

Method Description

CreateChildControls Overridden to populate the child control collection with
PortletDataControl that is used for rendering the portlet
content.

OnDeleting Overridden to call RemovePortlet on the ClientPage object
associated with the current page.

OnLoad Overridden to attach event handlers for the various standard verbs.

OnPreRender Overridden to update PortletDataControl with the current
windowId and setting the chrome state according to the current
window state.

SupportsMode Returns a true if the portlet supports the provided mode.

SupportsWindowState Returns a true if the portlet supports the provided window state.

EPiServer.WebParts.Core.EPiServerPersonalizationProvider

This class extends the built-in SqlPersonalizationProvider to handle the template – page model of
EPiServer. SqlPersonalizationProvider stores personalization data based on the query string excluding
query variables. With this behavior all EPiServer pages using the same .aspx file would share personalization
data.

A site is configured to use this provider by adding or modifying the webParts section in web.config. See the
“web.config” chapter for configuration details.

This class overrides the following public methods:

Method Description

SavePersonalizationBlob Saves personalization data to the underlying data store under an

HAppendix – API Documentation | 29

altered version of the provided path.

LoadPersonalizationBlobs Loads raw personalization data from the underlying data store
based on an altered version of the provided path.

ResetPersonalizationBlob Deletes raw personalization data from the underlying data store
based on an altered version of the path.

PropertyWebPart

This is a custom EPiServer property for storing Web Part registration references. In EPiServer Edit mode a
PropertyWebPart is rendered as a drop-down list where all registered Web Parts are listed. The selected Web
Part is available in the property value when queried. This property can be used to populate
ExtendedWebPartsZone using its WebPartProperty property.

This example illustrates how to hook up ExtendedWebPartZone with a name of a property, in this case
“SelectedWebPart”.

<WebParts:ExtendedWebPartManager runat="server" ID="WebPartManager" />

<WebParts:PortletManager runat="server" ID="PortletManager" />

<WebParts:ExtendedWebPartZone runat="server" ID="theZone"
 WebPartProperty="SelectedWebPart" />

Copyright © ElektroPost Stockholm AB. ElektroPost and EPiServer® are registered trademarks of ElektroPost Stockholm AB.
Other product and company names mentioned in this document may be the trademarks of their respective owners.

The document may be freely distributed in its entirety, either digitally or in printed format, to all EPiServer users. Changes to the
content or partial copying of the content may not be carried out without permission from ElektroPost Stockholm AB:

ElektroPost Stockholm AB
Finlandsgatan 38
SE-164 74 Kista
Sweden

Changes are periodically made to the document and these will be published in new editions of the document. ElektroPost
reserves the right to improve or change the products or programs included in this document at any time.

	Introduction
	Overview
	Templates
	Portal.aspx
	Mixed.aspx

	Configuration
	Install ASP.NET 2.0
	Sample Package
	web.config
	Configuring the Database

	Administration
	Web Part Registration
	Register a Web Part
	Register a WSRP Portlet

	Example 1 – Displaying EPiServer Content in a Web Part
	Derive from a Web Part?
	Markup
	Code-Behind File

	Example 2 – Displaying EPiServer Page Listings in a Web Part
	Markup
	Code-Behind
	The Result

	Example 3 – Implement a Connection between Web Parts
	Connection Interface
	Connection Provider
	Connection Consumer
	The Web Parts in Action

	Further References
	Appendix – API Documentation
	EPiServer WebPart Controls
	EPiServer.WebParts.WebControls.ExtendedWebPartManager
	EPiServer.WebParts.WebControls.ExtendedWebPartZone
	EPiServer.WebParts.WebControls.MaximizedWebPartZone
	EPiServer.WebPart.WebControls.RegisteredWebPartCatalog
	EPiServer.WebParts.WebControls.RssControl
	EPiServer.WebParts.WebControls.DisplayModeDropDown
	EPiServer.WebParts.WebControls.ScopeDropDown
	EPiServer.WebParts.WebControls.ScopeCheckBox
	EPiServer.WebParts.WebControls.Wsrp.PortletCatalogPart
	EPiServer.WebParts.WebControls.Wsrp.PortletManager
	EPiServer.WebParts.WebControls.Wsrp.WsrpWebPart
	EPiServer.WebParts.Core.EPiServerPersonalizationProvider

	PropertyWebPart

