
Developing Solutions
with EPiServer

by Rolf Åberg

© Copyright 2004, ElektroPost Stockholm AB
mailto:info@episerver.com
http://www.episerver.com
i

Developing Solutions with EPiServer

ISBN 91-631-5351-3

© Copyright 2004 ElektroPost Stockholm AB, mailto:info@episerver.com

Published by:

ElektroPost Stockholm AB
Finlandsgatan 38
SE–164 74 KISTA
Sweden

Tel. +46 (0)8–444 19 30
Fax +46 (0)8–444 19 59

All rights reserved. Without limiting the the rights under copyright reserved
above, no parts of this publication may be reproduced, stored in or introduced
into a retrieval system, or transmitted, in any form or by any means (electronic,
mechanical, photocopying, recording or otherwise) without the prior written
permission of the copyright owner of this book.

First published 2004

Författares Bokmaskin, Stockholm 2004

Set in 11/13 pt Garamond, headings in Tahoma.
ii

Contents

Contents . iii

Table of Contents. v

Foreword. xix

1 Windows Development and ASP.NET Basics . 1

2 EPiServer Overview and Operation. 13

3 Developing with EPiServer 4: Basic Insights . 23

4 Mimicking the Example Web Site . 57

5 Avoiding Errors, Testing and Debugging . 95

6 EPiServer Base Classes and Interfaces . 125

7 EPiServer Web Controls . 165

8 Custom Property Data Types and Filters . 201

9 Data Modelling. 211

10 Personalization. 235

11 Job Scheduling. 243

12 File and Folder Objects . 253

13 Extending EPiServer . 267

A Finding Information . 311

B Database Queries. 315

C Developers’ Book List . 323

D ANSI To HTML Entity Table . 325

List of Figures . 329

List of Tables . 333

List of Examples. 337
iii

iv

Table of Contents

Contents . iii

Table of Contents. v

Foreword .xix

1 Windows Development and ASP.NET Basics . 1
How Does EPiServer Work Its Magic? .1

ASP.NET Web Forms Are Event-Driven, Making Them Appear Much Like Windows Forms1
Translate the Event-Driven Model to the Web, Do Not Create an X Window System 3

Handling Events on the Server. .4
Using Forms Help Preserve Visual Consistency .4

ASP.NET View State Variable ViewState. .5
Avoiding Re-Initialising with Every Form Posting: IsPostBack. .5

Events Are Handled in Compiled Code on the Server .6
‘Code-Behind File’ Is Microsoft’s Term .6
When Compiled Code-Behind Files Form a Dynamic Link Library (DLL). .7

The ASP.NET Magic: Going from a Web Form to an HTML Page .8
Going from an EPiServer Web Page to an HTML Page in the Visitor’s Browser 9

You’ll Be Seeing EPiServerSample.DLL a Lot, Not EPiApp.DLL . 11

2 EPiServer Overview and Operation. 13
EPiServer Overview . 13

EPiServer 4 Is Only the Latest Incarnation . 13
Relation Between EPiServer and Internet Information Services, IIS. 14
EPiServer 4 Is Backwards Compatible. 14
EPiServer’s View of People . 14

Division of Responsibilities between Roles . 14
EPiServer DLL and Executable Infrastructure . 15

EPiServer Operation. 15
EPiServer Is a Trifurcated Application. 15

All Modes Are Multi-User . 16
The Most Important Admin Mode Assignment . 16
Editor Efforts Are Crucial . 16
Admin Mode . 16

Names of Property Data Types Are Different in Admin Mode . 18
Edit Mode . 18

Naming Web Pages .19
Tools . 19
v

Table of Contents
Page Tree . 20
Sort Order in The Page Tree . 20
EPiServer Handles Versions Automatically . 21
Built-In Properties in Edit Mode . 21

The Page Chain, Tools and Techniques Used . 21

3 Developing with EPiServer 4: Basic Insights . 23
EPiServer Structure and Object Model . 23

Framework Definition Files . 23
Regions Are Central. 24

Relationship Between Page Templates, Page Types and Web Pages . 24
Framework Definition Files and Page Templates Are Created in Visual Studio .NET 25
Page Types Are Created in EPiServer Admin Mode. 25
Web Pages Are Created in EPiServer Edit Mode by EPiServer Editors . 26

The Web Pages Live in a Web Page Tree. 26
EPiServer 4 Architecture . 27

EPiServer Architecture and Folder Contents . 28
The Very Important templates Folder . 29

EPiServer Content Framework: Combining Pages and Contents to Make a Web Site 29
A Visual Layout Divided . 30
Separate Presentation from Content: EPiServer Page Type Properties . 30
Properties Always Have a Data Type . 31
Built-in Properties . 31
User-defined Properties: Static Properties . 32
User-defined Properties: Dynamic Properties . 32
Dealing with Properties in Code . 33
Boolean Properties . 33
Interaction between Web Pages and the Database. 33
Using Web User Controls in Framework Definition Files and Page Template Files. 34

Purpose of EPiServer Framework Definition Files . 35
EPiServer Regions . 36
EPiServer Regions Are Used by Means of the Content Class. 37
Both the Region and Content Classes Are Part of EPiServer.WebControls 37

Page Template Files . 37
Using HTML Tables for Layout . 37

A Very Simple Framework Definition File Using HTML Tables for Layout 38
A Very Simple Page Template Using the Very Simple Framework Definition File 39

Accessibility Considerations Starting with EPiServer 4.3 . 40
Using HTML Div Elements for Layout . 40
Inner Make-Up of a Page Template File which Doesn’t Use a Framework Definition File 43
EPiServer Content Framework Is Not Unlike ASP.NET 2.0 Master Pages and Content Pages. 44
EPiServer Name Spaces . 44

EPiServer . 45
EPiServer.Core . 45
EPiServer.Core.Html . 45
EPiServer.Filters . 45
vi

EPiServer.Personalization . 46
EPiServer.PlugIn . 46
EPiServer.Security . 46
EPiServer.SpecializedProperties . 46
EPiServer.WebControls .46

Permissions and User Identities Are Handled By EPiServer (and You) . 46
User Identities and Permissions Are Easy to Handle In Code . 47

EPiServer System Settings in the web.config File . 48
Accessing System Settings from Code . 49
You Can Add Your Own Settings. 52

EPiServer Development . 52
Developing EPiServer Solutions is a Little Different to Developing ASP.NET Solutions 52

Tools Needed . 52
Developing ASP.NET Solutions . 53
Developing Solutions with EPiServer . 53

EPiServer’s Built-In Web User Controls .53
EPiServer Base Classes and Interfaces . 53
Extending EPiServer 4 Is a Lot Easier . 54
Performance Considerations . 54

4 Mimicking the Example Web Site . 57
Let’s Create a Web Site by Mimicking the Example Site . 57
Game Plan . 57
Install EPiServer 4 and Let It Create the Example Web Site . 57

Inventory Example Web Site . 58
Page Templates, Page Types and Their Properties, Web Pages, Folders and the Database 59

Page Templates which Really are Used in the Example Web Site . 59
Page Types Are Created from Page Templates–Page Types Own Page Templates 60
Some Page Types Have Common Page Templates . 62
Properties Used for Page Types . 62
Dynamic Properties Used . 63
Properties Used on Start Page . 64
Web Pages Created from Page Types . 65
Folders and Database Tables Used . 66

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install. 67
Inventory ‘Empty’ Web Site . 68
Page Templates, Page Types and Their Properties, Web Pages, Folders and the Database 69

Properties Used on Page Type Start Page . 69
Dynamic Properties Used . 69
Web Pages Created from the Single Page Type . 70

Order of Business. 70
Create and Use Dynamic Property ‘Global search page’ . 70
Create the Same Page Types That Exist in the Example Web Site . 70

We’ll Cheat a Little . 71
Create a Page Type to Hold Most Common Properties . 71
Create Page Type ‘Ordinary web page’ . 72
vii

Table of Contents
Create Page Types ‘Calendar’ and ‘Calender event’ . 72
Interlude: Create the Top-Level Web Pages. 74
Create the Last Page Types . 75

Create the Same Web Pages That Exist in the Example Web Site . 77
Putting the QuickSearch Bar Back on the Start Page. 77
Spreading The News .77
Set up a Few Dates . 78
Cleaning up the Start Page. .79
Final Result . 79

Removing Superfluous Web Page Versions . 80
A Closer Look at Frameworks and Page Templates in the Example Web Site . 80

Anatomy of an EPiServer Framework Definition File . 80
Web User Controls and EPiServer Base Classes in DefaultFramework . 80
The HTML Tables in DefaultFramework . 81
EPiServer Regions . 83

Inside an EPiServer Page Template File . 84
Framework Definition Files . 85
Page Template Files . 85
Looking into the Start Page, Default.aspx and DefaultFramework.ascx . 85

Looking into the Immutable Part of DefaultFramework.ascx . 85
Setting the Table Background ‘background="<%=HeaderImage%>"’ . 87
Anchor ‘<a href='<%=EPiServer.Global.EPConfig.RootDir%>'>’ with an Image 87
Using QuickSearch ‘<development:QuickSearch ID="QuickSearch" runat="server" />’ 88
Web Pages As Menu: <development:TopMenu runat="server" id="TopMenu" /> 89
Use of Regions in DefaultFramework.ascx by Default.aspx Page Template 90
News Items Go in the Left-Most Area, Region menuRegion . 90
Region mainRegion Gets a Picture, a Heading and Some Text . 91

5 Avoiding Errors, Testing and Debugging . 95
Separate Presentation and Data . 95

ASP.NET Templated Controls Has Built-In Separation of Presentation and Data 95
Express Your Intent Clearly in Code, Comment When You Must . 96
Testing Equals Module Testing . 96

Make Tests Easy, Easy to Interpret and Self-Documenting . 96
Have Your Code Write Data to Files, Compare Files between Versions of the Code 96

When Bugs Are Reported Start by Expanding the Test Suite. 97
Common Problems in ASP.NET Development . 97

Useful Tools. 97
DebugView. 98
FileMon . 98
RegMon . 100

The Importance of Knowledge and Experience. 101
Microsoft .NET Framework and Visual C# .NET . 101

Boxing Is Very Popular . 101
Use StringBuilder Instead of String, But Not Always. 102

It Is Faster to Use Implicit Concatenation than More Calls to Append . 103
viii

Debugging Is a Three-Pronged Choice . 103
Tracing in HTML. 103

Switching on Tracing for the Whole Application . 105
Adding Debug Code to Your Code . 105

System.Diagnostics.Debug . 106
System.Diagnostics.Debug.Assert . 106
System.Diagnostics.Debug.Write and WriteLine; WriteIf and WriteLineIf 107
Debug Output Can Be Effortlessly Passed to a File . 107
Conditional Compilation . 108
The Conditional Attribute for Functions . 108

Debugging with Visual Studio .NET . 109
Debugging a Live EPiServer Application. 110
Break Points . 110
Static Break Points . 111
Dynamic, Conditional, Break Points . 111
Single-Stepping in Code. 112
Step Into . 112
Step Over (Step/Execute Call) . 113
Step Out (Finish up Here and Return to Caller) . 114
Move the Point of Execution. 114
Watch Expressions, QuickWatch and QuickestWatch. 115
QuickWatch . 115
QuickestWatch . 115
Handling Exceptions . 116
Call Stack . 116
Command Window: Command Mode and Immediate Mode . 117

Use the Logging Capabilities Introduced with EPiServer 4.3. 118
Statistics logging . 119

Optimising Performance. 119
More Rules . 119

What Is Taking So Long? . 120
Change Algorithms . 121

Using the Debug Switch for EPiServer Scheduler Service . 121

6 EPiServer Base Classes and Interfaces. 125
The Ever-Present Web Page Tree . 125
PageBase, UserControlBase and PageData: When to Use What . 126
EPiServer.PageBase. 126

Public Properties for EPiServer.PageBase . 128
Public Methods for EPiServer.PageBase . 128
More Information on Using the Public Properties and Methods in EPiServer.PageBase. 129

PageBase.Configuration . 129
PageBase.Controls . 131
PageBase.CurrentPage . 131
PageBase.CurrentPageLink. 133
PageBase.CurrentUser . 133
ix

Table of Contents
PageBase.EPCharset, PageBase.EPLanguage and PageBase.EPLocale. 134
PageBase.AccessDenied. 135
PageBase.GetChildren . 135
PageBase.GetPage . 136
PageBase.IsValue . 136
PageBase.QueryDistinctAccess . 136
PageBase.RequiredAccess . 137
PageBase.Translate. 137

EPiServer.SimplePage . 137
EPiServer.EditPage . 138

Public Properties . 138
Public Methods . 138
Protected Properties . 138
Protected Methods . 139

EPiServer.TemplatePage . 139
Creating an EPiServer Page Template File . 140

Open the Example Web Site Solution in Visual Studio .NET . 140
Add a Framework File, Change Prefixes . 140

EPiServer.SystemPage . 140
EPiServer.Util.LoginBase . 141

HandleFormsLogin Method . 141
EPiServer.UserControlBase . 141

More Information on Using the Public Properties and Methods in UserControlBase 143
UserControlBase.PageBase. 143

EPiServer.Core.PageData . 144
More Information on Using the Public Properties and Methods in EPiServer.Core.PageData 146

EPiServer.Core.PageData.ACL. 146
Public Methods . 147
EPiServer.Core.PageData.Changed . 148
EPiServer.Core.PageData.ChangedBy . 149
EPiServer.Core.PageData.Created, Saved and Changed . 149
EPiServer.Core.PageData.CreatedBy . 149
EPiServer.Core.PageData.Indent. 149
EPiServer.Core.PageData.Item and EPiServer.Core.PageData.Property 150
EPiServer.Core.PageData.LinkURL. 150
EPiServer.Core.PageData.PageLink . 150
EPiServer.Core.PageData.PageName. 151
EPiServer.Core.PageData.PageTypeID. 152
EPiServer.Core.PageData.PageTypeName . 152
EPiServer.Core.PageData.ParentLink . 152
EPiServer.Core.PageData.StartPublish and EPiServer.Core.PageData.StopPublish 152
EPiServer.Core.PageData.VisibleInMenu . 152
EPiServer.Core.PageData.QueryAccess . 153

EPiServer.Core.IPageSource . 153
More Information on Using the Public Properties and Methods in EPiServer.IPageSource. 154

EPiServer.Global . 154
The Static Properties BaseDirectory, EPConfig, EPDataFactory, EPLang and InstanceName 155
x

EPiServer.Global.EPConfig . 155
EPiServer.Global.EPDataFactory . 155
EPiServer.Global.EPLang . 155

EPiServer.ApplicationConfiguration . 156
Adding Your Own Settings . 156

Use EPiServer.ConfigFileSettings to Create New Settings. 157
Settings May Be Encrypted. 158

Public Properties and Methods for EPiServer.ApplicationConfiguration . 158
More Information on Using the Public Properties and Methods in ApplicationConfiguration 160

EPiServer.ApplicationConfiguration.Authentication . 161
EPiServer.ApplicationConfiguration.ConfigFile. 161
EPiServer.ApplicationConfiguration.HostUrl . 162
EPiServer.ApplicationConfiguration.RootDir . 162
EPiServer.ApplicationConfiguration.RootPage and StartPage . 163
EPiServer.ApplicationConfiguration.Exists . 163
EPiServer.ApplicationConfiguration.InitSmtpServer . 164
EPiServer.ApplicationConfiguration.IsEncrypted . 164

7 EPiServer Web Controls. 165
Inheritance Tree for EPiServer.WebControls. 169
ASP.NET Templated Controls . 169

Templated Controls Have an Imaginary Foreach Statement. 170
The Container Property . 170
EPiServer Templated Controls . 171
The Container Property in EPiServer Templated Controls. 172

EPiServer.WebControls.Clear . 172
EPiServer.WebControls.Content . 173
EPiServer.WebControls.ContentFramework . 175
EPiServer.WebControls.ContentFrameworkSelector. 175
EPiServer.WebControls.ExplorerTree . 176
EPiServer.WebControls.MenuList. 178
EPiServer.WebControls.NewsList. 180
EPiServer.WebControls.PageList . 182
EPiServer.WebControls.PageSearch. 183
EPiServer.WebControls.PageTree . 186
EPiServer.WebControls.Property . 191
EPiServer.WebControls.PropertyCriteriaControl. 193
EPiServer.WebControls.PropertySearch . 194

EPiServer.PropertyCriteria . 194
Using PropertySearch . 195

EPiServer.WebControls.Region . 197
EPiServer.WebControls.SiteMap . 198
EPiServer.WebControls.Translate . 198

Translating ASP Intrinsic controls. 199
xi

Table of Contents
8 Custom Property Data Types and Filters . 201
Customized Property Data Types (Customized Value Types) . 201

Class EPiServer.PlugIn.PageDefinitionTypePlugIn . 202
Creating New Property Data Type BackgroundColourType . 202

Make the New Property Type Part of the System . 204
Creating New Restricted Property Data Type MailToUrl . 205

Custom Filters. 207
Creating the Custom Filter Class . 208
Connecting the Custom Filter to the Control . 209
The Results of Using the Custom Filter . 209
More Information on the EPiServer Web Site . 209

9 Data Modelling. 211
EPiServer.DataFactory and EPiServer.Global.EPDataFactory. 211

EPiServer.Global.EPDataFactory May Be Used in Non-Content Framework Web Forms 211
Public Properties, Methods and Events for EPiServer.DataFactory . 212
More Information on Using the Properties, Methods and Events in EPiServer.DataFactory 215

EPiServer.DataFactory.DynPropTree . 215
Page Cache Statistics Related Properties . 215
EPiServer.DataFactory.Delete . 215
EPiServer.DataFactory.DeleteChildren . 216
EPiServer.DataFactory.FindPagesWithCriteria . 216
EPiServer.DataFactory.GetChildren and GetPage . 217
EPiServer.DataFactory.GetDefaultPageData . 217
EPiServer.DataFactory.Save . 219

EPiServer.DataFactory Events . 219
EPiServer.DataFactory.CreatingPage . 219
EPiServer.DataFactory.PublishedPage . 220
EPiServer.DataFactory.SavingPage . 220

XML Web Services and EPiServer . 221
Consuming Data from an EPiServer Web Site – Web Services Client . 222

Preparations . 222
Create a Windows Application Web Services Client . 222

Import and Export. 226
Export and Import Functions in the EPiServer Admin Mode . 226
Export and Import Classes in EPiServer.Enterprise. 226
EPiServer.Enterprise . 227

ExportImportBase . 227
Public Properties . 227
Public Methods . 228
DataExporter . 229
Public Methods . 229
DataImporter . 229
Public Methods . 229

Example Code for Using the EPiServer.Enterprise Classes. 229
Exporting a Page Type. 229
xii

Importing a Page Type . 229
Handling Warnings and Errors . 230

Synchronizing Pages Between EPiServer Web Sites . 230
Property AllowPageSync is the Focal Point . 230
PageLookup Provides Focusing. 230
Simple and Manageable Page Synchronisation Example . 230
On the Exporting Web Site. 231
On the Importing Web Site . 232

10Personalization . 235
Contents of the EPiServer.Personalization Name Space . 235
Class PersonalizedData (EPiServer.Personalization.PersonalizedData) . 236

Item, or Storing Other Personalized Settings. 237
Database Storage. 238

Using the EPiServer.Personalization Name Space . 239
Accessing Information for the Currently Logged-On User . 239
PersonalizedData.GetProperties . 239
PersonalizedData.Load . 240
Using Subscription (EPiServer.Personalization.Subscription) . 241

11Job Scheduling. 243
Scheduled Jobs – Have the Computer Work for You . 243
Jobs Have Access to the Full Infrastructure . 244
EPiServer Demands on the Scheduled Job Class . 244

Attribute EPiServer.PlugIn.ScheduledPlugIn . 244
Execute Method . 244

A Trivial Scheduled Job . 244
Elementary Troubleshooting of Scheduled Jobs . 246

Debug Scheduled Jobs just like any other EPiServer Component. 246
Develop a Cautious Mentality . 247

Scheduled Job to List All Pages Created Last Week. 247
The Code . 247
The Comments . 249

The Pseudo Code . 249
Search Criterion . 249
Performing the Search. 250
Enumerating the Pages Found . 250
Calling SendMail from Execute . 250
Finally, in Execute . 250
Function SendMail . 250
Web.config Is Used to Store Configuration Data. 250

Discover the New Job in EPiServer Admin Mode . 251
Set Up the New Job . 251

Removing an Obsolete Scheduled Job . 252
xiii

Table of Contents
12File and Folder Objects . 253
File and Folder Handling in EPiServer 4.3 and Later . 253
EPiServer.FileSystem . 253

Important Note on Path Strings . 253
Classes . 254
Delegates . 254
EPiServer.FileSystem.UnifiedDirectory . 255
EPiServer.FileSystem.UnifiedFile . 256

Public Properties . 256
Public Methods . 256

EPiServer.FileSystem.UnifiedFileSummary. 257
Public Properties . 257

EPiServer.FileSystem.UnifiedFileSystem . 258
Public Properties . 258
Public Methods . 258
Public Events . 258

EPiServer.FileSystem.UnifiedFileSystemConfiguration. 258
Public Properties . 258
Public Methods . 259

EPiServer.FileSystem.UnifiedSearchHit . 259
Public Properties . 259

EPiServer.FileSystem.UnifiedSearchHitCollection . 259
Public Properties . 259
Public Methods . 259

EPiServer.FileSystem.UnifiedSearchQuery . 260
Public Properties . 260
Public Methods . 260

EPiServer.FileSystem.WebDownloadManager . 260
Public Methods . 260

EPiServer.FileSystem.FileSystemEventHandler. 261
EPiServer Web Custom Controls that Utilise the EPiServer.FileSystem Classes 261
Use of EPiServer.FileSystem in EPiServer 4.3 (and Later) . 261

File Management Tool in EPiServer Admin Mode . 262
File Management Tool in EPiServer Admin Mode . 262
File Management Tool on Action Window in EPiServer Edit Mode . 262
Functionality in the File Management Tool . 262

Using EPiServer.FileSystem . 262
UnifiedFileSystem. 262

Configuration Settings . 262
Root Folder . 263

UnifiedDirectory . 263
GetDirectories. 263
ACL . 264
GetFiles . 264

UnifiedFile and UnifiedFileSummary . 264
UnifiedSearchQuery, UnifiedSearchHitCollection and UnifiedSearchHit . 265
xiv

13Extending EPiServer . 267
Extensible Areas of the EPiServer Admin and Edit Mode . 267

Admin Mode Areas . 267
Edit Mode Areas. 268

Creating Plug-Ins for EPiServer. 268
EPiServer.PlugIn Name Space. 269

Classes in the EPiServer.PlugIn Name Space. 269
Interfaces in the EPiServer.PlugIn Name Space . 270
Enumerations in the EPiServer.PlugIn Name Space . 270

EPiServer.PlugIn.PlugInArea Enumeration . 270
EPiServer.PlugIn.PlugInAttribute . 271
EPiServer.PlugIn.GuiPlugInAttribute . 272

Public Properties for GuiPlugInAttribute. 272
Public Methods for GuiPlugInAttribute . 272
More Information on the GuiPlugInAttribute . 272
EPiServer.PlugIn.GuiPlugInAttribute.Area . 272
EPiServer.PlugIn.GuiPlugInAttribute.Url . 272

EPiServer.PlugIn.PageDefinitionTypePlugInAttribute . 273
EPiServer.PlugIn.PlugInDescriptor . 273

Public Properties . 273
Public Methods . 273

EPiServer.PlugIn.PlugInLocator . 273
Public Methods . 273

EPiServer.PlugIn.PlugInSettings. 274
Public Methods . 274

EPiServer.PlugIn.ScheduledPlugInAttribute . 274
Public Properties . 274

Plug-Ins for the ActionWindow (EPiServer Edit Mode) . 274
Simple Plug-In for the Action Window . 275
Create a Live Clock Plug-In for the Action Window . 276

Create the Web User Control ActionWindowClock. 276
The HTML Part for ActionWindowClock . 276
The Code-Behind File for ActionWindowClock. 276

Plug-Ins for the Edit Panel Tab Strip (EPiServer Edit Mode) . 277
Very Simple Edit Panel Tab Strip Extension . 277
A Page Information Plug-In for the Edit Panel Tab Strip . 278

Create the Web User Control EditPanelPageInfo. 278
The HMTL Part of EditPanelPageInfo. 278
The Code-Behind File for EditPanelPageInfo . 278
Using the Plug-In . 279

Plug-Ins for the EditTree Tab Strip (EPiServer Edit Mode) . 279
Creating a Simple Plug-In for the EditTree Tab Strip . 279
Create a ‘My Pages’ Edit Tree Extension . 280

Create the Web User Control EditTreeMyPages . 281
HTML Part . 281
Code-Behind File for Web User Control EditTreeMyPages . 281
Extending the Extension . 283
xv

Table of Contents
Plug-Ins for the System Settings Area of EPiServer Admin Mode . 283
Simplest Possible System Settings Area Plug-In. 283
Web.config Editor for the System Settings Area in EPiServer Admin Mode 285

DataList Information . 285
HTML Part of the Plug-In . 285
Code-Behind File for the Plug-In. 286
Plug-In Class Attribute GuiPlugIn . 288
Function EditItem . 288
Function CancelItem . 288
Function UpdateItem. 288
Look (and Feel) of WebConfigEditor . 289
Conclusion . 289
Improvements Left to the Reader . 290

Plug-Ins for the AdminMenu (EPiServer Admin Mode) . 290
Very Simple Plug-In for the Admin Mode Menu . 290
A Perhaps Useful Addition to the Admin Mode Menu . 291

Create the Web Form . 292
The HTML Part . 292
The Code-Behind File . 293

Elementary Troubleshooting of GUI Plug-Ins . 296
Extending the DHTML Editor. 297

EPiServer.Editor.EditorPlugInAttribute Class . 298
Public Properties for EditorPlugInAttribute . 298
Public Methods for EditorPlugInAttribute . 299

EPiServer.Editor.ToolUsage Enumeration . 299
EPiServer.Editor.Tools.ToolBase Class . 300

Public Properties for ToolBase . 300
Protected Methods for ToolBase . 301

EPiServer.Editor.Tools.IInitializableTool Interface . 301
A Skeleton DHTML Editor Extension Plug-In . 301
Basic DHTML Editor Plug-In. 302
Creating DHTML Editor Plug-Ins as Separate Visual Studio .NET Solutions 304
A Visible DHTML Editor Plug-In to Toggle between Letter and HTML Entity 304

Folders Used . 304
Create a New Class Library in Visual Studio .NET Solution . 304
Create Client-Side JavaScript File LetterToHtmlEntity.js. 305
Using the Plug-In . 307
Visual Tuning of the Plug-In. 307

An Invisible DHTML Editor Plug-In to Toggle between Letter and HTML Entity 308
Create the DhtmlEditorLetterToEntityVisible Class Library. 308

Create Client-Side JavaScript File LetterToHtmlEntityCovert.js . 309
Shadow Folders. 310

A Finding Information . 311
Information on the Internet . 311
A Lot Is Available on the EPiServer Web Site . 311
xvi

EPiServer Developer Community . 312
Developer Forums . 312
Code Samples . 312

Frequently Asked Questions (Common Questions) Lists. 312
Technical notes and White Papers. 313
EPiServer Software Development Kit . 313

Syntax Definition File . 314

B Database Queries. 315
Important Database Tables . 315
SQL Queries to Retrieve Page Types, Properties and Web Pages . 317

List All Defined Page Types . 317
List All Page Template Files, Page Types and Web Pages . 318
List All Defined Data Types . 318
List All Defined Property Types and Their Data Type . 319
List All Page Types and Their Properties . 319
List All Dynamic Properties . 319
List All Web Pages with Their Properties and Current Values. 320
SQL Query to List All User Tables and Their Columns In a SQL Server Database. 320
SQL Server Procedure to Display the Web Page Hierarchy . 320

C Developers’ Book List . 323

D ANSI To HTML Entity Table . 325

List of Figures . 329

List of Tables . 333

List of Examples. 337
xvii

Table of Contents
xviii

Foreword

Our main focus at ElektroPost has always been the person, man or woman, de-
veloping information solutions, in short the developer. Having this focus has
been key to EPiServer’s huge success which we find both humbling and inspira-
tional in our continued work.

It is the ability of the Web developer to understand and make the most of any
development product that enables them to create the best and most innovative
customer solutions. Several hundred Web developers are creating information
solutions with EPiServer on a daily basis. Thanks to them EPiServer is today one
of most wide-spread Web content management systems in the Nordic countries.
We’re also able to see a growing interest from organisations and companies else-
where. We hope that this book can become a stepping stone in the effort to
spread knowledge and information to new groups of developers and new market
places.

The information solutions market place is crowded by many suppliers and
products displaying an array of more or less mature offerings. Many customers
and consulting companies are actively seeking a solutions platform to which they
can make a long-term committment. We know that EPiServer is the product to
fulfill those needs.

A book cannot work miracles but it will make your development efforts easi-
er. Our goal is to shed light on EPiServer development and, hopefully, to serve
as a source of both inspiration and knowledge in your daily work. It’s high time
to open up your senses to the potential and possibilities that are EPiServer 4.

Welcome to the EPiServer Universe, be sure to also visit our Web site at http://
www.episerver.com

Per Rask, Managing Director
ElektroPost
xix

We would like to take this opportunity to thank everyone at ElektroPost who has worked hard
to make EPiServer a success:

Anna Olsson, Daniel Maurer, Erik Skagerlind, Fredrik Tjärnberg,
Gøran Hüllert, Henrik Alm, Janne Westberg, Joakim Ribb, Johan Olofsson,
Linus Ekström, Magnus Stråle, Maria Hedlund, Mats Hellström, Mikael Runhem,
Odd Simon Simonsen, Per Bjurström, Per Rask, Roger Eriksson, Roger Wirz, Ruwen Jin,
Steve Celius, Susanne Magnusson, Tina Runhem, Øyvind Wabakken Hognestad.
xx

1
Windows Development and ASP.NET Basics

EPiServer 4 is a Web content management system based on Microsoft .NET in
general and ASP.NET in particular. Through extensive use of templates it’s very
easy to get a comprehensive Web site up and running quickly without any pro-
gramming at all. However, to reap the full benefits of EPiServer 4 some software
development might be needed. The aim of this book is to make you a successful
EPiServer 4 developer.

In this, the first chapter, we’ll begin with an introduction to Windows appli-
cation development and ASP.NET overview.

If you’re thinking about skipping this chapter at least take a good long look at
figure 1-6 on page 10.

How Does EPiServer Work Its Magic?

EPiServer, being an ASP.NET application in itself, benefits from Microsoft
.NET Framework and its rich API set. As you can imagine though, there’s a lot
of EPiServer involvement necessary to transform an EPiServer Web Page as it
was created in EPiServer Edit mode into the HTML page viewed in a Web
browser. To fully appreciate this we begin by repeating a few Windows and
ASP.NET concepts.

ASP.NET Web Forms Are Event-Driven, Making Them Appear Much Like Windows Forms

Ever since the twentieth century, when Windows was little more than a fancy file
handler, it has been a message passing system. Messages were passed between
Windows and Windows applications, and of course between the various parts of
Windows. Messages were often created by translating both software and hard-
ware events. When the mouse was moved the resulting hardware interrupt was
captured by Windows which translated it into a message and passed this message
to the pertinent application for proper handling.

Before Visual Basic was introduced this message handling was prominent
when developing Windows applications: according to developer lore these appli-
cations centred around a central message loop which processed messages from
its message queue (supplied by Windows). With the arrival of Visual Basic the
programming paradigm changed and the message loop wasn’t needed in the fore-
ground any more. Instead developers would create event handling functions
1

How Does EPiServer Work Its Magic?
which were invoked by Windows whenever something happened. The event-
driven programming model was born.

Figure 1-1: Comparing Message Passing, to the left, and Event Driven programming, to the right.

In figure 1-1 we see a message passing Windows application on the left and an
event-drive Windows application on the right. In the message passing Windows
applications hardware and software events were translated by Windows into mes-
sages. These messages were sent to the pertinent application and handled in the
message handling loop. The message handling loop mainly comprised a C lan-
guage while statement surrounding a very long switch statement.

Example 1-1: Pseudo code for the message handling loop in early Windows applications.

MSG msg;

while (GetMessage(&msg, NULL, 0, 0)) {

switch (msg.message) {

case WM_LBUTTONUP :

case WM_RBUTTONUP :

case WM_MBUTTONUP :

Button_Click(msg.MousePos);

break;

case WM_KEYUP :

Button_KeyPress(msg.KeyPressed);

break;

}

}

Message Passing Event-Driven

private void Button_KeyPress(…) {
}

private void Button_Click(…) {
}

Windows

private void Button_KeyPress(…) {
}

private void Button_Click(…) {
}

Windows
2

1. Windows Development and ASP.NET Basics
So, earlier Windows programs spent their time in the message loop waiting for
messages to arrive.

For event-driven applications the story is very different. There’s no ‘visible’
message loop, there’s no unpacking of strangely packed attributes and there’s no
interpreting of messages. Instead event-driven applications have a lot of event
handling code, routines that are ‘automagically’ called by the run-time system
when a hardware or software event occurs. The fingerprint of the event handling
routines, i.e. their return data type (if applicable), number of and data type for for-
mal attributes is determined by Microsoft when they design the development and
run-time environment for the computer language (how it interacts with Win-
dows). From this it follows that when there are no events to handle an event-driv-
en application is simply idling away, doing absolutely nothing.

One way to look at event-driven programming, with a message passing twist,
would be to say that the message handling loop is moved from every application
into a run-time system which closely interacts with Windows. It is the run-time
system that calls the event handling routines and passes the pertinent arguments.

The event-driven paradigm is very much alive in Microsoft .NET Framework,
which is obvious in both Visual Basic .NET and C#.

Translate the Event-Driven Model to the Web, Do Not Create an X Window System

With the success of the event-driven programming model, it was only natural for
Microsoft to also use that for Web-based applications. An interesting and wide-
spread system that uses the event-driven model in a network is the X Window
System. The system centres around an intelligent and powerful server with X Ter-
minals connected to it over the network. X Terminals aren’t supposed to be able
to do very much on their own – everything is processed on the server. This means
that the mouse cursor is controlled by the server. When the mouse is moved a
message is passed from the X Terminal to the server which calculates the new
mouse cursor position and passes back a message to the terminal which eventu-
ally redraws the mouse cursor at the new position. This is fine in a high-speed net-
work and with a limited amount of clients, but what if we were to deploy a Web
application using the same technique?

In doing this there’s a very big performance issue to consider: mouse move-
ments cannot be expected to be handled by the server! And in ASP.NET they’re
not. In fact, the standard Web Forms Controls (Button, Check box, Label, Radio
button, etc.) that are available for Web Forms may look just like their Windows
Forms Controls cousins, but there are far fewer events defined for them (that
they can act upon). A comparison between a Web Forms Button control and a
Windows Forms Button control reveals that the Web Forms Button control has
a mere eight events where as the Windows Forms Button control has 57 events.
The only events they have in common are Click and Disposed. So, none of the
Drag events, Key and Mouse events from the Windows Forms Button control
are available for the Web Forms Button control, and this holds true for all Web
3

How Does EPiServer Work Its Magic?
Forms controls. Of course, there’s always the possibility of handling all process-
ing on the client, so bypassing the whole issue. But that’s not the route Microsoft
chose for ASP.NET. They realised that a lot, as in very much, could be won from
letting the server handle most, if not all, of the processing.

Handling Events on the Server

One of the major benefits of ASP.NET is that it provides server controls, con-
trols whose processing is handled by the server, not on the client.

Example 1-2: Declaration of an ASP.NET Button control.

<asp:Button id="AspNetButton" runat="server" Text="ASP.NET Button"></asp:Button>

The code in example 1-2 shows what the HTML code looks like when an
ASP.NET Button object has been added to a Web Form (or Web User Control).
What makes it interesting is the attribute ‘runat’ which decides that this particular
instance of an ASP.NET Button should be processed on the server. Adding an
HTML Button object looks like this in HTML mode of Visual Studio .NET:

Example 1-3: Declaration of an HTML Button control.

<INPUT type="button" value="HTML Button">

So, we’ve decided to handle processing on the server, now we need to maintain
some kind of visual consistency for the user. In other words, how do we make
sure that user input isn’t erased as we go back and forth between the client and
server and that we can change control attributes programmatically? In ASP .NET
the answer is two-fold: wrap everything in a form and preserve view state for
ASP.NET controls such as Labels.

Using Forms Help Preserve Visual Consistency

When Visual Studio .NET is used to create a Web Form, all controls are auto-
matically enveloped in a form.

Example 1-4: Form created by Visual Studio .NET.

<form id="Form1" method="post" runat="server">

…

</form>

The form itself is considered to be an ASP.NET object, as you might guess from
the ‘runat’ attribute seen in example 1-4.

When an ASP.NET Button is ‘clicked’ the whole contents of the form is
shipped off to the server for processing. For ASP.NET controls this processing
takes place in the compiled code-behind file.

Controls that allow the user to change an attribute, such as filling in text in a
text box or checking a check button preserve their setting by simply changing the
HTML that is posted back to the client to reflect the current ‘settings’.
4

1. Windows Development and ASP.NET Basics
ASP.NET View State Variable ViewState

For some ASP.NET controls, predominantly the Label control, ASP.NET utilis-
es a special variable called ‘__VIEWSTATE’ to preserve the control’s visual state.
But the view state variable isn’t limited to handling state values belonging to con-
trols, it can also be used to handle state values for the page as a whole. As the view
state is passed between the client and server with the form both have up-to-date
information about the view state. This means that you’re guaranteed that code on
the server can access the view state contents without any performance penalty –
it never triggers a server–client round-trip. This also holds true for any code you
might want to have processed on the client side. Having said that, we cannot sim-
ply assume that using the view state variable is a panacea for solving all problems.
As the number of view states contained in the view state variable grows, so does
its own size, increasing the transfer times between Web client and server.

The contents of view state variables are preserved in a hidden input HTML
field.

Example 1-5: Actual View State variable.

<input type="hidden" name="__VIEWSTATE"

value="dDwtNDM1NDIwNzU7Oz5aI7A1H+3YFiX9HB/U6X6zksDC/w==" />

Apparently the view state variable contents aren’t encrypted but an HMAC-
SHA1 (Hashed Message Authentication Code-Secure Hash Algorithm is a meth-
od to calculate secure check sums) digest is appended that protects it from tam-
pering. The resulting text is then Base64 encoded.

Example 1-5 shows a very short view state string; they can easily grow to sev-
eral kilobytes. The example EPiServer Web site has a view state of about 6000
bytes when the start page is first loaded.

EPiServer uses the view state variable. Values, settings, in EPiServer (EPiSer-
ver.WebControls.Property) have a standard boolean attribute EditMode which
controls whether the value, setting, should be rendered when the EPiServer Web
Page is viewed in Edit mode or only in the regular View mode. EditMode is part
of the control’s view state. EditMode is used in, e.g. the Profile Web User Control
(Profile.ascx) which ships with EPiServer.

Example 1-6: Wrapping view state EditMode in a property function in Profile.ascx.

public bool EditMode {

get { return ViewState["EditMode"] == null ? false : (bool) ViewState["EditMode"]; }

set { ViewState["EditMode"] = value; }

}

Avoiding Re-Initialising with Every Form Posting: IsPostBack

A third important piece in the ASP.NET foundation is the ability to decide
whether the current page load results from a post back or if it is the first time the
Web Form is being rendered. This is implemented using a boolean Page attribute
5

How Does EPiServer Work Its Magic?
IsPostBack. Since IsPostBack is a standard attribute of System.Web.UI.Page all
EPiServer Page Template Files also have access to it (since System.Web.UI.Page
is part of the inheritance chain for Page Template Files).

IsPostBack is used to load initialisation data only once, among other uses.

Example 1-7: Typical use of IsPostBack in EPiServer solutions.

private void Page_Load(object sender, System.EventArgs e) {

if(! IsPostBack) {

DataBind();

}

}

Example 1-7 shows DataBind being called in the Page_Load function. While this
is fine, it bears the sign of a fall-back solution to letting the individual control ob-
jects handle their own data binding.

Events Are Handled in Compiled Code on the Server

One of the ASP.NET breakthroughs is the ability to separate presentation and
code. ASP.NET even has physical separation: presentation objects go in one file
and the supporting code is put in its own file.

ASP.NET Web Forms files have the standard extension ‘aspx’ and its sup-
porting code file has the same name and a second extension that is unique for the
computer language used, e.g. ‘aspx.cs’ for C# (Visual C# .NET) and ‘aspx.vb’ for
Visual Basic .NET. (ASP.NET Web User Controls use the same double exten-
sion pattern, the visual parts file has an ‘ascx’ extension and the code file uses ‘as-
cx.cs’, etc.)

‘Code-Behind File’ Is Microsoft’s Term

Microsoft has dubbed the supporting code file ‘code-behind file’.

Example 1-8: C# code in the code-behind file to handle the Click event for an ASP.NET Button.

private void AspNetButton_Click(object sender, System.EventArgs e) {

}

Compare this with the declaration for a Button in a Windows Forms application.

Example 1-9: C# code in the source file to handle the Click event for a Windows Forms Button.

private void WindowsFormsButton_Click(object sender, System.EventArgs e) {

}

As you can see they’re identical, which should mean, and indeed does mean, that
you handle the click event in the same way irrespective of where it came from, an
ASP.NET Web Forms application or a Windows Forms application.
6

1. Windows Development and ASP.NET Basics
When Compiled Code-Behind Files Form a Dynamic Link Library (DLL)

When the code-behind files for an ASP.NET application are compiled, a Win-
dows Dynamic Link Library (well, of course it’s really a Microsoft .NET Frame-
work Dynamic Link Library) is created and put in the bin (a folder named bin).
The next time this code is needed it’s already compiled and the whole process
should be faster.

Figure 1-2: Code-behind files for an ASP.NET application are compiled into a dynamic link library file.

If we use figure 1-2 as an example we see that the application, called AspApp, is
comprised of one ASP.NET Web Form and two ASP.NET Web User Controls,
each with a corresponding code-behind C# file. When the application is com-
piled in Visual Studio .NET, each of the three source code files, Webform.as-
cx.cs, ctrl1.ascx.cs and ctrl2.ascx.cs, is compiled into a single Dynamic Link Li-
brary File, AspApp.dll, and put in the application’s bin folder on the Web server.

Figure 1-3: Clicking an ASP.NET Button on a client results in handling code being called in the code-behind
DLL on the Web server.

webform
.aspx

ctrl1.ascx

ctrl2.ascx

webform
.aspx.cs

ctrl1.ascx
.cs

ctrl2.ascx
.cs

AspApp.dll

webform
.aspx

AspApp.dll

AspNetButton

private void AspNetButton_Click(…) {
…
}

7

How Does EPiServer Work Its Magic?
The ASP.NET Magic: Going from a Web Form to an HTML Page

When Internet Information Services, IIS, receives a request for an HTML page
it simply returns the page. When it comes to ASP.NET Web Forms, aspx pages,
IIS calls on help. So, who do you call? Well, this is configured for IIS.

Figure 1-4: Linking file extension to handler (picture edited).

As can be seen in figure 1-4, ASP.NET Web Forms, aspx files, are handled by
ASPNET_ISAPI.DLL for IIS.

So the request for an aspx files is handed off to ASPNET_ISAPI.DLL, then
what? Basically the request is passed from ASPNET_ISAPI.DLL to the
ASP.NET worker process ASPNET_WP.Exe (W3WP.Exe for IIS 6.0), which
reads and processes the pertinent aspx file. This processing also involves compi-
lation of code-behind files. After everything is processed, HTML is passed back
to the client via the same route the request took.

Figure 1-5: The ASP.NET chain from client to server and back.

The picture in figure 1-5 is based on a few assumptions:

File System

webform
.aspx

IIS

ASP.NET Worker Process
(ASPNET_WP.Exe/W3WP.Exe)

HTMLAspx Page Request

http://…/webform.aspx

ASP.NET

ASPNET_ISAPI.DLL

ctrl1.ascx

ctrl2.ascx

Microsoft .NET Framework

AspApp.dll
8

1. Windows Development and ASP.NET Basics
There is an ASP.NET Web Form, webform.aspx, with two ASP.NET Web
User Controls, ctrl1.aspx and ctrl2.aspx

There’s a code-behind file for each of the aspx and ascx files compiled into a
dynamic link library, AspApp.DLL

The user types in the URL, or clicks on a link pointing to, http://Web server/
path/webform.aspx

Going from an EPiServer Web Page to an HTML Page in the Visitor’s Browser

Plain vanilla ASP.NET Web Forms and ASP.NET Web User Controls inherit
from System.Web.UI.Page and System.Web.UI.UserControl. This guarantees
that wiring as described in figure 1-5 is available.

EPiServer Page Templates and Framework Definition Files are not plain va-
nilla ASP.NET object classes since they do not directly inherit from the same
classes as do Web Forms and Web User Controls. Instead they inherit from
EPiServer.PageBase.
Table 1-1: Inheritance for EPiServer object types.

EPiServer Object Type Main Class Inherits From

Framework Definition File EPiServer.WebControls.ContentFramework, a
descendant of EPiServer.UserControlBase

Page Template File An EPiServer.PageBase descendant, often EPi-
Server.TemplatePage

Web User Controls EPiServer.UserControlBase
9

How Does EPiServer Work Its Magic?
EPiServer doesn’t forego the ASP.NET goodies, all of the EPiServer classes
mentioned in table 1-1 are descendants of relevant ASP.NET classes, such as Sys-
tem.Web.UI.Page.

Figure 1-6: The ASP.NET and EPiServer chain from client to server and back.

The differences between figures 1-5 and 1-6 aren’t great, but they are important:

An EPiServer Page Template Page, epiform.aspx, is used

There’s a Framework Definition File, epfw.ascx, used by the Page Template
File

The code-behind files have been compiled into EPiApp.DLL

The call is made not simply to ‘epiform.aspx’ but to ‘epiform.aspx?id=3’

The rather innocuous looking call to ‘epiform.aspx?id=3’ is responsible for trig-
gering a lot of EPiServer action. Remember that no EPiServer Web Pages are
stored on disk, they are merely a combination of a Page Type and current con-
tents for the various EPiServer values (called Page Properties) defined for the
particular Page Type which was used as a basis for the Page. One way of viewing
the EPiServer operations is as follows:

1. The Page Template File is parsed and compiled (only occurs the first time the
page is executed).

2. The contents of the Framework Definition File are read and inserted into the
Page Template File.

3. The OnInit method of the controls inserted in step 2 is called.

4. The OnInit method of the Framework Definition File is called.

File System

epiform
.aspx

IIS

ASP.NET Worker Process
(ASPNET_WP.Exe/W3WP.Exe)

HTMLAspx Page Request

http://…/epiform.aspx?id=3

ASP.NET

ASPNET_ISAPI.DLL

epfw.ascx

epc1.ascx

Microsoft .NET Framework

EPiServer DLLs
EPiServer Database

EPiApp.dll
10

1. Windows Development and ASP.NET Basics
5. The OnInit method of the Page Template file is called, causing page data to
be loaded, user access permissions checked, etc.

6. The Page Load event for the Page template File is triggered.

7. The Page Load event for the various controls initialized in step 3 is triggered.

8. The HTML results are sent back to the caller.

The list above is really rather fascinating. It looks so simple and effortless on pa-
per when in reality many years of hard work have been required to make both
ASP.NET and EPiServer realities. One of the more interesting steps in the list,
from an EPiServer point of view, is number 5 which perhaps needs a more de-
tailed explanation. The processing at this point involves a lot of the EPiServer
run-time infrastructure (mostly located in EPiServer.dll). If you look at figure 1-
6 you can see the cooperation between ASP.NET, EPiApp.DLL, EPiServer
DLLs, File System and the Database. All of these systems are active during this
step in the processing. These are some of the processing sub-steps performed by
EPiServer components at this point:

Access control lists for Web Pages are checked for the current user identity

EPiServer Content controls are enumerated and their contents are retrieved
from the database tables

You’ll Be Seeing EPiServerSample.DLL a Lot, Not EPiApp.DLL

In the example above we assumed that the code-behind files for the EPiServer
solution we created were compiled into EPiApp.DLL. When you install EPiServ-
er, the solution will have the name EPiServerSample and compilation will pro-
duce a Dynamic Link Library called EPiServerSample.DLL.
11

How Does EPiServer Work Its Magic?
12

2
EPiServer Overview and Operation

Developers need to know about basic operation of an EPiServer Web site, so
we’ll discuss that but first an overview of EPiServer 4.

EPiServer Overview

As a content management system EPiServer has been designed with four crucial
objectives in mind:

Make the resulting Web site fast for the viewer

Make the Web site contents easy to change and maintain

Make the Web site easy to administer, whilst providing powerful functions
when needed

Make EPiServer functions comprehensive and easy to use for developers

We at ElektroPost are confident that these goals will become apparent as you
learn more about EPiServer.

EPiServer 4 Is Only the Latest Incarnation

EPiServer 4 comes from a line of successful EPiServer products. The first ver-
sion was released commercially in 1997. Version 3, the immediate predecessor to
version 4 was object based, but not object oriented (much like Visual Basic before
Visual Basic .NET). Being based on Microsoft .NET and ASP.NET, EPiServer
4 is object oriented within the specific limitations of Microsoft .NET, e.g. there’s
no multiple inheritance in Microsoft .NET.

Given the long lineage of EPiServer and the vast possibilities of Microsoft
.NET we at ElektroPost hope that you will enjoy using EPiServer as much as
we’ve enjoyed creating it!

The goals we set for EPiServer 4 included:

Greater simplicity for EPiServer developers

Implement EPiServer 4 also as an XML Web Service to promote interaction
with other systems
13

EPiServer Overview
Increased performance utilising the new cache functions in Microsoft .NET
and EPiServer

EPiServer 4 itself is written in C#.

Relation Between EPiServer and Internet Information Services, IIS

Being based on ASP.NET, EPiServer 4 demands the use of Internet Information
Services, IIS, 5 or 6 for Web server.

EPiServer 4 Is Backwards Compatible

Backwards compatibility is really not something developers embrace. However,
the people using our products are always very grateful when we do make some-
thing new work well with our previous products. Heeding this, EPiServer 4 is ful-
ly backwards compatible with existing customer solutions.

If the customer so wishes, an existing solution can be gradully upgraded to
EPiServer 4. Part of the credit for this goes to Microsoft .NET Framework which
allows for both ASP and ASP.NET techniques to cohabit the same application.

EPiServer’s View of People

During use of a typical EPiServer 4 Web site, three roles can be distinguished:
Web site viewers, Web site editors and Web site administrators. The Web site
viewers are the people using the information on the Web site. Editors are charged
with creating and maintaining content and the administrators are ultimately re-
sponsible for administering the Web site, including making sure that editors have
access to the pertinent part of the Web site contents. As EPiServer is created for,
and used by, organisations and companies of all sizes, this division is very flexible:
often editors are also administrators.

Add to this the EPiServer 4 developer and we have a full complement of roles.
As a developer you will certainly play all parts from time to time.

Division of Responsibilities between Roles

When discussing the division of responsibilities between roles for Web site de-
velopment and maintenance we concentrate on three roles: Web site administra-
tors, Web site editors and EPiServer developers. In short, Web site administra-
tors are very much in the driver’s seat as they alone decide what elements should
make up the Web site. Developers act as producers of Web site elements for the
administrators to make available to the Web site editors.

Typically, but in no way demanded by EPiServer, a Web site administrator is
either an IT employee or a ‘power user’, as the role of the administrator is some-
what technical. As maintaining the Web site’s contents is crucial, Web site editors
are simply the people who would otherwise would be responsible for information
dissemination in the organisation.
14

2. EPiServer Overview and Operation
EPiServer DLL and Executable Infrastructure

The EPiServer DLLs that have been alluded to, e.g. in figure 1-6, make up the
EPiServer infrastructure, i.e. the parts that aren’t implemented as ASP.NET Web
User Controls.

EPiServer Operation

EPiServer Is a Trifurcated Application

We’ve already stated and hinted at it several times: EPiServer comprises three dif-
ferent but equally important parts, listed here in relation to usage frequency:

View mode

Edit mode

Table 2-1: EPiServer DLLs and executables.

File Name Purpose

ElektroPost.Licensing.dll License handler.

ElektroPost.Win32.dll File access permissions handling, IIS meta base
interface and compression support.

EPiServer.CodeBehind.dll Supporting logic for the built-in Web forms and
user controls, e.g. Admin and Edit modes and
ASP.NET Web User Controls.

EPiServer.dll Main module, by far the biggest file at 800+ kilo-
bytes.

EPiServer.Enterprise.dll Support library for Web site import and export.

EPiServer.Install.dll Installation support.

EPiServer.Scheduler.dll EPiServers Scheduler support.

EPiServer.Scheduler.WKTL.dll Defines the interface used to communicate
between EPiServer and the scheduler service
(Well-Known Type Library, WKTL).

EPiServer.SchedulerSvc.exe Windows Service to handle scheduled jobs.

EPiServer.Workflow.dll EPiServer work flow handler.

ldapper.dll Connector for Directory Services based on
Lightweight Directory Access Protocol, LDAP,
such as Microsoft Active Directory.
15

EPiServer Operation
Admin mode

View mode is the mode enjoyed by visitors to the Web site. It’s the ‘normal’ Web
server mode.

Edit mode is used by EPiServer Editors, the people responsible for adding
and maintaining content for the Web site.

Admin mode, of course, is for EPiServer Administrators, the people who
busy themselves with matters such as ‘who can do what to which page?’. Admin
mode is also used by developers since it’s most often they who create Page Types
from the Page Templates they’ve created themselves in Visual Studio .NET.
Whether the Page Type or the Page Template is created first doesn’t matter, ei-
ther way is fine.

All Modes Are Multi-User

Its rather obvious that a Web server would allow multiple simultaneous viewers,
but it might not be obvious that EPiServer also allows multiple Editors and Ad-
ministrators to work at the same time.

In day-to-day operation, Administrators and Editors go about their chores.
Administrators mainly busy themselves with access permissions and logins whilst
Editors merrily add new, change or remove old content to/from the Web site.

From an EPiServer developer point of view the most important thing about
what Administrators and Editors do is Page Types and their Properties. Typically
this forms only a small part of the Administrators’ work load but all of what Ed-
itors do.

The Most Important Admin Mode Assignment

Developers are charged with maintaining a list of available Page Types and their
properties. These Page Types are little more than Page Template Files, possibly
with some added extra properties. Properties are either built-in or created by Ad-
ministrators. As properties are created Developers may provide default values.

Editor Efforts Are Crucial

Editors are the users of Page Types and their properties, they are the ones sup-
plying properties’ initial content and, perhaps, changing and deleting that content.
As content is entered or changed, the database table tblProperty is used to read
from and write to (as well as several other database tables).

Admin Mode

EPiServer Admin mode is available to accounts that are members of the EPi-
Server group WebAdmins or the local Administrators group, directly or indirect-
ly.

There are two ways to enter Admin mode in EPiServer:
16

2. EPiServer Overview and Operation
Append ‘/admin’ to your Web site’s URL, e.g. ‘http://widgets.info/admin’,
and navigate there; after logging on, you’re in Admin mode

Navigate to your Web site and log on (using whatever means available, e.g. if
you’ve included a log-on tool button, such as), then right-click and select
Admin mode from the shortcut menu

Once you’re logged on, you’ll have access to Admin mode and Edit mode from
View mode on the shortcut, right-click, menu.

The tool-bar in the upper left corner of the left pane in Admin mode is some-
what frugal as it contains only three tools.

Figure 2-1: Admin mode tool-bar (EPiServer version 4.2).

In Admin mode you have access to a lot of tools in the left pane together with all
Page Types that have been defined.

Figure 2-2: Tools and Page Types in the left pane of EPiServer 4.2 Admin mode (pictures have been re-
arranged).

Edit mode View mode Help
17

EPiServer Operation
Names of Property Data Types Are Different in Admin Mode

The names of Property Data Types are a little different in Admin mode; keep this
in mind when you add Properties in Admin mode.

Edit Mode

EPiServer Edit mode is constructed with ease of use as an important goal, as Edit
mode will be used mainly by non-developers. Just after installation of EPiServer,
accounts that are direct or indirect members of the group WebEditors have ac-
cess to Edit mode. (Edit mode access permisionss are controlled by administra-
tors.)

Entering Edit mode in EPiServer is very similar to entering Admin mode:

Append ‘/edit’ to your Web site’s URL, e.g. ‘http://widgets.info/edit’, and
navigate there, after logging on you’re in Edit mode

Navigate to your Web site and log on (using whatever means available, e.g. if
you’ve included a log-on tool button, such as), then right-click and select
Edit mode from the shortcut menu

Table 2-2: EPiServer Property Data Types.

Data Type Name Data Type Name in Admin mode

Boolean ‘Selected/not selected’

Category ‘Category selection’

Date ‘Time/Date’

FloatNumber ‘Floating point number’

Form ‘Form’

LongString ‘Long string (>255)’

Number ‘Integer’

PageReference ‘Page’

PageType ‘Page type’

String ‘String (<= 255)’
18

2. EPiServer Overview and Operation
Figure 2-3: EPiServer Edit mode for the example Web site, start page being edited.

Figure 2-3 depicts EPiServer Edit mode. The screen dump was captured during
editing of the Start page for the example Web site. Worth noting is the editing
area with its tool-bar. This powerful editor is automatically invoked for every
EPiServer Property of type LongString.

Naming Web Pages

The name of a Web Page is often used in links, HTML anchor tags, so never give
the pages quirky names; instead use names such as ‘EPiServer Now with Oracle
Support’.

Tools

Once you’re logged on, you’ll have access to Admin mode and Edit mode from
View mode on the shortcut, right-click, menu. More tools are available by right-
clicking on a Web Page name, or another object in the left pane, and selecting
from the menu. The two most important tools available on the shortcut menu are
‘Create new’ and ‘Edit’. Editing may also be initiated simply by clicking on the
name of the Web Page.
19

EPiServer Operation
The tool-bar in EPiServer 4.2 Edit mode has eleven tool buttons.

Figure 2-4: EPiServer 4.2 Edit mode tool-bar.

Page Tree

The Edit mode Page Tree is a hierarchical representation of the all-important
Web Pages that the EPiServer Editors have created. The hierarchy of the Web
Page Tree is also the hierarchy of the Web site as presented to viewers. It is also
important when using some EPiServer controls, such as menu controls, since
they use the Web Page Tree hierarchy directly as menu hierarchy.

Figure 2-5: The Web Page Tree in EPiServer Edit mode (from the example Web site).

Sort Order in The Page Tree

The position of a Web Page in the Web Page Tree is determined by two things:
the hierarchical level of the Web Page and what sort order is used. The sort order
and possibly the sort index of the Page determine its position relative to other

Create new page

Cut selected page Copy selected page Paste selected page Delete selected page

Edit dynamic properties Change access permission

Open Action window Empty Recycle Bin HelpAdmin mode
20

2. EPiServer Overview and Operation
Web Pages at the same hierarchical level. You have a number of different sort cri-
teria to choose from, ranging from ‘Last created first in list’ to ‘According to sort
index’. As ‘Last created first in list’ is the default, it’s most convenient if you create
the Web Pages in reverse order to the desired sort order, i.e. start with the Web
Page you wish to have last in the list.

EPiServer Handles Versions Automatically

Whenever a Web Page is altered and subsequently saved, EPiServer regards this
as a new version of the Web Page. Versions are easy to handle but take up space
in the database, so Editors should make sure to avoid keeping more versions than
necessary.

Built-In Properties in Edit Mode

As mentioned earlier some of the built-in properties are handled in Edit mode.

Figure 2-6: The Start page for the example Web site in Edit mode.

Figure 2-6 shows some of the Properties on the Start page for the example Web
site. Among the properties there are four built-in ones:

Name

Start publish

Stop publish

Mark page as changed

The Page Chain, Tools and Techniques Used

When a Web site is being constructed, the developer pretty much single-handedly
performs all the duties of developing Framework Definition Files, Page Template
Files in Visual Studio .NET, creating Page Types and Properties in EPiServer Ad-
min mode and Web Pages in EPiServer Edit mode. Later, when the Web site has
reached the production phase the developer can concentrate on the development
21

EPiServer Operation
chores and creating new as well as updating existing Page Types. A figure sum-
marising the contributions of developers and editors might look like this:

Figure 2-7: Techniques and tools used in the operation of an EPiServer site.

Figure 2-7 considerably underestimates the number of editors. It’s not unusual
for a single Web site to have more than a hundred editors.

Suppose we start with the Web viewer, after all, that’s why we’re here really,
as all efforts centre around providing the best possible Web site from the custom-
er’s perspective. Viewers use their favourite Web browser, which doesn’t have to
be Internet Explorer since ASP.NET and EPiServer make it possible to be
browser agnostic by using mostly pure HTML and some JavaScript on the client.

When the layout and other requisites of the site have been determined, the de-
velopers go to work producing Page Template Files using Visual Studio .NET.
They then switch to EPiServer Admin mode and make Page Types out of the
Page Template Files, the Properties of which are then exposed to the work of the
good Editors. In many web site projects Page Types are created before Page
Templates, as programming is secondary to structure.

EPiServer, Internet Information Services,
Microsoft .NET Framework, Windows 2000

Server (or later)

Database
(Microsoft/Oracle)

Visual Studio .NET, C#Development

EPiServer Admin Mode

EPiServer Edit Mode

Content Provision

Administration

Web Viewer
22

3
Developing with EPiServer 4: Basic Insights

In this chapter these topics are presented in varying degrees of detail:

EPiServer structure and object model

EPiServer development

All examples in the book are written in Microsoft C#, but we’ve been careful to
choose examples that can also be written in Visual Basic .NET, or indeed any oth-
er Microsoft .NET compatible language.

In order for you to be successful in studying this book and its examples we
believe that a working knowledge of Microsoft .NET Framework, ASP.NET and
C# is necessary. A lot of what you need to know about EPiServer is presented in
the book.

EPiServer Structure and Object Model

One of the things that EPiServer customers like the most about the product is
the fact that there’s is a clear separation of content and structure. This makes it
possible to, among other things, use content in several structure scenarios.

EPiServer implementations centre around four very important classes of both
ASP.NET and non-ASP.NET objects:

ASP.NET Web User Controls as Framework Definition Files

ASP.NET Web Forms as Page Templates

Page Types created from Page Templates

Web Pages created from Page Types

As you might imagine, making Framework Definition Files, Page Templates and
so on, is not the only way to use for Web User Controls and other ASP.NET fea-
tures in EPiServer solution development.

Framework Definition Files

Framework Definition Files are ASP.NET Web User Controls (ascx files) used
to create the visual, static, layout of a Web site. Framework Definition Files and
Page Template Files form the EPiServer Content Framework, the preferred
23

EPiServer Structure and Object Model
method to separate layout from content. We’ll be looking at and discussing the
EPiServer Content Framework a lot in this chapter and also in the following
chapters.

Regions Are Central

Developing with EPiServer centres around the concept of the region. An EPiS-
erver region is two things: an area on a Web page and an EPiServer object bound
to that area. The object is instantiated from the class Region in the name space
EPiServer.WebControls. This area can be filled with text, HTML elements, Web
User Controls or blanked out entirely. We will be discussing regions more below
and certainly using them a lot in the chapters to follow.

Relationship Between Page Templates, Page Types and Web Pages

As we are for the most part dealing with text and image based information, it’s
only natural to be handling pages containing text and images. In EPiServer par-
lance, there are three different types of pages:

Page Template, ASP.NET Web Form (aspx file), using a Framework Defini-
tion File and possibly other Web User Controls

Page Type, EPiServer object (Page Template with EPiServer values, settings)

Web Page, EPiServer object, instance of Page Type, containing text and other
objects added by Editors

As your organisation starts using EPiServer to create your Web site, you’ll prob-
ably notice that a lot of Web Pages are created from the same Page Type and that
some Page Types may be created from a single Page Template.

Figure 3-1: Relationship between Page Templates, Page Types and Web Pages.

The relationship between Page Templates, Page Types and Web Pages as depict-
ed in figure 3-1 is certainly a very dynamic one. There are no laws stating that a
Page Template can only be used to create four Page Type or that you must create
at least eight Web Pages from one Page Type. In fact, it’s most common that a

Page Template Web Pages (created by Editors)Page Type

MainBody,
MainIntro,

WriterName,
MetaKey-

words, etc.

Spread the word
around, Mimic has come
to town. Just yesterday
we learned the news
about the new version
of the successful web
content mangement
tool Mimic. Mimic has
now reached maturity!

Spread the word
around, Mimic has come
to town. Just yesterday
we learned the news
about the new version
of the successful web
content mangement
tool Mimic. Mimic has
now reached maturity!

Release of Mimic 4.3!Release of Mimic 4.3!
24

3. Developing with EPiServer 4: Basic Insights
single Page Type is created from every Page Template. What is carved in stone
though is that Web Pages can only be created from Page Types which, in turn,
can only be based on Page Templates.

Page Templates and Framework Definition Files are created using Visual Stu-
dio .NET, Page Types and Web Pages are made in EPiServer Admin mode and
Edit mode, respectively.

Framework Definition Files and Page Templates Are Created in Visual Studio .NET

As both Framework Definition Files and Page Templates are ASP.NET objects,
they are created using Visual Studio .NET. When creating them, a Framework
Definition File’s class, although being a Web User Control, is set to inherit not
from System.Web.UI.UserControl but from EPiServer.WebControls.Content-
Framework. In the same manner, the main class in a Page Template File inherits
from EPiServer.TemplatePage instead of System.Web.UI.Page.

That’s two of the few things a developer has to consider when starting to de-
velop for and with EPiServer. ‘Using’ the appropriate name spaces is also impor-
tant. It turns out that the name spaces EPiServer and EPiServer.Core go a long
way.

Page Types Are Created in EPiServer Admin Mode

Having created the Framework Definition Files and Page Templates for a Web
site, the developer next opens the Web site and logs on to Admin mode. EPi-
Server Page Types can only be created in EPiServer's Admin mode, nowhere else.
A simple, and yet correct, definition of an EPiServer Page Type is: an ASP.NET
Web Form with added EPiServer Properties. Thus we understand the need to use
EPiServer Admin mode to create Page Types as only EPiServer knows how to
deal with EPiServer Properties and affix them to Page Types. A property is de-
fined by its name and data type and the Page Type it is connected to. Properties
are only created and connected to Page Types in Admin mode, but that doesn’t
necessarily mean that only Administrators handle Properties. On the contrary,
more often than not Property handling will be the domain of developers.

EPiServer has a number of built-in data types for Properties and also a whole
infrastructure in place to make it easy for Editors to work with the properties and
their values as they create and maintain Web Pages from Page Types. Properties
are hinted at in figure 3-1 by the names MainBody, MainIntro and so on found
on the Page Type in mid-picture. EPiServer Properties will be discussed below.

It’s also in Admin mode that the workings of the database are more obvious,
as Page Types are stored in the database along with Property definitions for the
different Page Types. In other words if you’d like to know what Page Types have
been defined for an EPiServer Web site, the answer can always be found by que-
rying the database. In fact, when we discuss EPiServer Admin mode in more de-
tail below we’ll show you a SQL query to retrieve Page Type definitions. Please
25

EPiServer Structure and Object Model
keep all direct database accesses out of any EPiServer solution you create, use the
built-in functions for that and use direct access as a learning tool only.

Web Pages Are Created in EPiServer Edit Mode by EPiServer Editors

Until Web Page creation only developers were involved. Developers create
Framework Definition Files, Page Templates and Page Types. Web Pages are cre-
ated by designated EPiServer Editors, at least when the Web site is up and run-
ning. During development and maintenance of the Web site developers will have
to get their hands dirty by creating Web Pages themselves. ‘Starting’ the EPiServ-
er Edit mode is very similar to starting Admin mode, load the Web site start page,
log on and then enter Edit mode (see page 18).

The bulk of the data in the database is the result of Editors’ labour. The Web
Pages they create are nothing more than records in database tables connecting
properties and their values with Page Types. Moreover, EPiServer saves as many
versions of Web Pages as desired.

Remember, only the values of Properties are handled in Edit mode; there is
no provision for removing or deleting Properties in Edit mode. In fact, one as-
pect of Properties is that they can be marked ‘Value must be entered’ in Admin
mode, thus requiring Editors to supply a value for these properties.

The Web Pages Live in a Web Page Tree

New Web Pages created by Editors are added to the collection of Web Pages
called the ‘Web Page Tree’ or simply ‘Page Tree’ (sometimes even ‘Edit Tree’).
The Page Tree is hierarchical and just like any other tree in the computer world
its root points upwards. The site’s start page is a daughter of the Root Page.

Figure 3-2: Web Page Tree.

As you see, the Web Page Tree has a lot in common with folder trees, if you con-
sider the Root Page to be equivalent to the disk itself. The order in the Page Tree

Root Page

1st Level,
page #1

1st Level,
page #2

2nd Level,
page #1

2nd Level,
page #2

2nd Level,
page #3
26

3. Developing with EPiServer 4: Basic Insights
is quite important as it controls, for example, the Web Page display order and
menu order for some of the Web User Controls that ship with EPiServer, such
as TopMenu.ascx and Menu.ascx.

As the Web Page Tree is of paramount interest to EPiServer solution devel-
opers, there are two properties that are used to point out two of the most impor-
tant pages. The Properties EPiServer.Global.EPConfig.RootPage and EPiServer
.Global.EPConfig.StartPage point to the root page of the Web Page Tree and the
Start Page of the Web site, inside the Web Page Tree, respectively (more about
these on page 163 under the heading EPiServer.ApplicationConfiguration.RootPage
and StartPage).

Editors have full control of the Page Tree when in EPiServer Edit mode. Web
Pages can be moved around, deleted and new Pages may be created anywhere in
the Page Tree.

EPiServer 4 Architecture

As it is based on ASP.NET, it not surprising that the architecture for EPiServer
4 comprises many .NET elements.

Figure 3-3: EPiServer 4 Architecture.

Figure 3-3 conveys the overall structure of EPiServer. EPiServer comprises all
the elements within the dashed rectangle. Certainly when you install EPiServer
and configure it to use the example Web site, all the functionality within the rec-
tangle would come into play. It should be evident from figure 3-3 that the graph-
ical part and code in EPiServer are separated, just as ASP.NET makes possible.
What is not apparent in the figure is that page contents (head lines, references and

IIS and .NET Framework

EPiServer Base Classes

Code Behind Files (cs)

System
Configuration web.config

language.xml
*.xml

Data Layer

Public Objects

Web Controls, Reusable Com-
ponents in Templates

Server Pages for Page Templates (aspx)

Database

User Controls For Standardised
Parts of the Page as Header/

Footer (ascx)

Language
Handling
27

EPiServer Structure and Object Model
other text) are stored in the database. Thus we have the promise and possibility
of complete separation of page layout, page content and EPiServer code; there
doesn’t have to be any overlap between the three. How to go about this will be
clarified below.

A very important aspect of the database is that it allows EPiServer to handle
several versions for Web Pages.

EPiServer Architecture and Folder Contents

It’s always interesting to look at images depicting shoe-boxes, sorry, architecture.
Even more interesting is to find out what the boxes and other pictures corre-
spond to in real developer life.

Let’s try to mentally connect the architecture to the folders and files created
when installing EPiServer and letting it configure the example Web site. Here are
the ‘root’ sub-folders and the files in the root folder:

Figure 3-4: EPiServer folder tree and files in root folder.

To connect the folders and the architecture we need a table:
Table 3-1: EPiServer folder contents.

Folder Name Contents

admin ASP.NET Server Pages (aspx) and ASP.NET Web User Controls
(ascx) for EPiServer administration mode.

bin EPiServer executables and Dynamic Link Libraries, DLLs. The
Microsoft .NET DLLs constitute EPiServer Base Classes.

edit ASP.NET Server Pages and ASP.NET Web User Controls for
EPiServer Edit mode.
28

3. Developing with EPiServer 4: Basic Insights
The Very Important templates Folder

To a developer, not all EPiServer folders are created equal. In particular you’d
want to familiarise yourself with the contents of the templates folder and its sub-
folders, Frameworks and Units.

In the templates folder there are about forty ASP.NET Server Pages (aspx)
and their corresponding C# code-behind files. In templates\Frameworks we find
a handful of ASP.NET User Controls (ascx). Lastly, in the folder templates\
Units there are again some forty ASP.NET User Controls (ascx).

All in all, the contents of these folders provide a rich source both of informa-
tion and examples to be used when developing solutions with EPiServer 4.

EPiServer Content Framework: Combining Pages and Contents to Make a Web Site

How, exactly, is it that EPiServer ‘does the trick’ of putting together ASP.NET
Server Pages, User Controls, Web Custom Controls and contents to make a Web
site? To understand this, we must first look at the ‘EPiServer Content Frame-
work’.

images Well, images (for the example web site).

lang Language files for EPiServer, e.g. the English language files are
languageEN.xml and templateLanguageEN.xml, respectively. All
language files are formatted in standard XML format.

styles In the case of EPiServer 4.2 there’s only one file here: epis-
erver.css. EPiServer.css is the Cascading Style Sheet document
controlling all text on the Web site. For EPiServer 4.3, the
number of style sheet files has increased to three; Editor.css,
Structure.css and Units.css.

templates An important folder. Here, and in its subfolders Framework and
Units, we find all ASP.NET Server Pages and ASP.NET User
Controls that are used for a particular Web site.

upload Folder used by Editors when creating new content.

Util Utilities for Administration and Edit modes, mostly ASP.NET
Web User Controls. Also folders for style sheets, JavaScript files
and images.

WebServices Home to three XML Web Services files provided by ElektroPost:
Authenticate.asmx, CacheService.asmx and DataFactoryServ-
ice.asmx.

Table 3-1: EPiServer folder contents.

Folder Name Contents
29

EPiServer Structure and Object Model
The EPiServer Content Framework has been designed with these objectives
in mind (among others):

Separate presentation from content: keep visual layout and dynamic content
in separate files

Use ASP.NET standard elements and classes for every aspect of the Content
Framework

A Visual Layout Divided

We now know that the Framework Definition File and Page Template File co-
operate to make it possible to have a skeleton layout, which is static in nature, and
dynamic content separated. Not surprisingly, the static layout elements go into
the Framework Definition File and the Page Template File defines the dynamic
content. This separation is used to define the overall visual layout in the Frame-
work Definition File, ultimately resulting in a consistent look and feel for the Web
site, and putting dynamic content in Page Template Files. This should result in
the use of very few Framework Definition Files for a Web site and as many Page
Template Files as there is need for. Framework Definition File are all well-formed
HTML files; one of them is actually an XHTML 1.1 file.

Page Template Files are not obliged to use Framework Definition Files; quite
a few of the ones shipped with EPiServer do not. Consistently, Page Definition
Files that forego using Framework Definition Files are themselves well-formed
HTML files.

Giving yourself a little click-around tour on the example Web site should be
convincing. It’s evident that some parts of the Web pages do not seem to change
at all, whilst others reflect your actions. In particular there’s a lot going on in the
left-hand menu and in the centre of the page.

As shipped, EPiServer 4 contains four Framework Definition Files and about
forty Page Template Files (including Default.aspx in the root folder).

Separate Presentation from Content: EPiServer Page Type Properties

Adding EPiServer Properties to an, almost plain vanilla, ASP.NET Web Form
turns it into an EPiServer Page Type. These are managed by the EPiServer infra-
structure and thus have access to all of its capabilities.

EPiServer Page Type Properties come in two flavours:

Built-in Properties, always present, supplied by the EPiServer Run-Time Sys-
tem

User-defined Properties, handled by developers in EPiServer Admin mode

The User-defined Properties, the user being a developer, can also be viewed as
two groups.

Static Properties, defined for and fixed to a single Page Type
30

3. Developing with EPiServer 4: Basic Insights
Dynamic Properties, defined as stand-alone, subsequently linked to a Web
Page in the Web Page Tree. Inherited by all subordinate Web Pages

Properties Always Have a Data Type

No matter which kind of EPiServer Property we’re looking at, they all share a
common set of data types. There are currently ten Property data types:

All data types inherit from EPiServer.Core.PropertyData which inherits from
System.Object. Please note that Property Data Type Form, PropertyForm, is not
a basic data type, as it inherits from PropertyNumber. It is included with the basic
data types for convenience and for practical reasons.

In addition to the built-in Property types, it’s always possible to create new
types by inheriting from the existing ones. Using the example Web site as an il-
lustration, it defines eleven custom Property types.

Built-in Properties

The built-in Properties for Page Types in EPiServer are very important; they hold
such information as when to first publish a page, when to stop publishing a page,
the position of the Web Page in the Page Tree and a lot more. Some of these
Properties can be changed directly in Edit mode; others are changed indirectly,
e.g. when a Web Page is moved in the Page Tree, and yet others are completely

Table 3-2: EPiServer Property Data Types.

Data Type Description

Boolean Traditional boolean type. PropertyBoolean

Category List of categories. PropertyCategory

Date Time and Date. PropertyDate

FloatNumber Number with decimals, e.g. 3.14. PropertyFloatNumber

Form HTML Form. PropertyForm

LongString Used for text that can exceed 255 characters in length. Property-
LongString

Number Integers. PropertyNumber

PageReference Link to Web Page. PropertyPageReference

PageType Page Type, as in EPiServer Page Type defined in Admin mode.
PropertyPageType

String Short text, fewer than 256 characters in length. PropertyString
31

EPiServer Structure and Object Model
under the control of the EPiServer Run-Time system. This table summarises
some of the built-in properties:

One of the built-in properties in table 3-3, PageTargetFrame, has a custom Data
Type, PropertyFrame. It is defined in the class EPiServer.SpecializedProper-
ties.PropertyFrame which inherits from PropertyNumber.

User-defined Properties: Static Properties

Static Properties are created, named, given a data type and other settings all in Ad-
min mode and for a particular Page Type. The only thing left for Editors to do in
Edit mode is to provide a value for the Property. Some common static properties
are shown in table 3-4.

User-defined Properties: Dynamic Properties

Dynamic Properties are treated in much the same way as as static Properties with
the important exception that they are not tied to a particular page. Dynamic Prop-
erties allows you to do smart things. Take for example a dynamic property Me-
taKeywords of type String. Assign this to your start page and your Web site will
have these keywords for global keywords. Now, let’s say that you’d like to replace
the global keywords on some pages. You then simply equip that Page Type with

Table 3-3: Built-in Properties for Page Types and thus Web Pages.

Property Name Description, Data Type

PageDeleted True if page is in the waste basket. PropertyBoolean

PageStartPublish Time and date to start publishing the page. PropertyDate

PageWorkStatus Editing status for page. PropertyNumber

PageParentLink PageLink to parent page. PropertyPageReference

PageTypeID Page type ID. PropertyPageType

PageName Name if the Web Page. PropertyString

PageTargetFrame The frame that this page should be displayed in. Property-
Frame

Table 3-4: Common static user-defined properties.

Property Name Description

MainBody The body text of the page. LongString

MainIntro The introductory text, preamble, for the page. String

WriterName The name of the person who authored the Web Page. String
32

3. Developing with EPiServer 4: Basic Insights
its own static attribute MetaKeywords, then in Edit mode, with keywords perti-
nent to the Page Type.

Dealing with Properties in Code

Dealing with the value, contents, of Properties is easy both in HTML code and
in C#, as is evident from these examples (the identifier Container is explained on
page 170):

Example 3-1: Displaying the value of built-in Property PageName in HTML code.

<%# Container.CurrentPage.PageName %> // Or...

<%# CurrentPage.Property["PageName"] %>

Example 3-2: Displaying the value of user-defined Property MainIntro in HTML code.

<%# Container.CurrentPage["MainIntro"] %>

Example 3-3: Displaying the value of built-in Property PageName in C#.

Response.Write(CurrentPage.PageName); // Or...

Response.Write(CurrentPage.Property["PageName"].Value.ToString());

Example 3-4: Displaying the value of user-defined Property MainIntro in C#.

Response.Write(CurrentPage.Property["MainIntro"].Value.ToString());

Whether or not a Property is dynamic is answered by the field IsDynamicProp-
erty:

Example 3-5: Using IsDynamicProperty for user-defined Property MainIntro in C#.

if (CurrentPage.Property["MainIntro"].IsDynamicProperty) {

Response.Write("Dynamic Property");

}

Boolean Properties

Be aware that the value returned from a boolean Property is either ‘true’ or ‘null’.

Interaction between Web Pages and the Database

Separating presentation from content is achieved in EPiServer by having all pres-
entation elements in ASP.NET Server Pages and all content in database tables.
Simple, don’t you think? Actually, the architecture behind this is quite straightfor-
ward.

It all revolves around properties as defined by EPiServer. These properties ap-
pear in several shapes and forms. Properties can be added to a Framework Def-
inition File or a Page Template File by User Controls or added by administrators.
In the latter case, administrators add properties selecting from one of the twenty
different kinds of properties defined by EPiServer. Most content will be pre-
served in properties of either the String type or the Long string type. (String is for
33

EPiServer Structure and Object Model
text having a total length of 255 characters, or less, Long string for all longer
texts.)

When Editors go about their jobs, it is the contents of properties that they
deal with; they are never allowed to affect which properties are available for cer-
tain Page Types.

The physical separation of content and presentation structure is maintained
by keeping all Web Forms and their code at the Web server and content in the
database. In particular the table tblProperty contains all properties for a particular
page.

Figure 3-5: Cooperation between structure and content.

If figure 3-5 the object on the left comprises both the Framework Definition File
and the Page Template File.

Using Web User Controls in Framework Definition Files and Page Template Files

ASP.NET Web User Controls can be described as components with a visual
HTML component and a code component (in C# or any other Microsoft .NET
compatible language). In EPiServer development these are typically used to en-
capsulate visual elements and code into one package which can be re-used in
many places.

At the core of every EPiServer-based Web site we find quite simple structures,
at least from an ASP.NET perspective. Typically there are a few master Frame-
work Definition Files, presumably a slightly greater number of Page Template
Files and, to complete the story, some Web User Controls.

Web Forms Page With
HTML Controls, Web Con-
trols and Web User Con-
trols, Defining the Layout

+ tblProperty, tblPage,
and others

=

34

3. Developing with EPiServer 4: Basic Insights
The relation between a Framework Definition File and Page Template Files is
depicted in figure 3-6.

Figure 3-6: Framework Definition Files ‘declare’ regions that are used by Page Template Files.

Now, this relationship is by no means controlled by the Framework Definition
File; actually it’s the other way around: Page Template Files can choose to adhere
to any Framework Definition File they so please (i.e. the developer creating the
Page Template File decides).

Framework Definition Files are charged with the task of visual design, they
are often constructed as standard HTML tables (using the HTML elements table,
tr and td), but can also be implemented using HTML Div areas. In EPiServer par-
lance, we say that the Framework Definition Files defines visual regions, the con-
tents of which are determined by the Page Template Files. When a Page Template
File specifies the use of a certain Framework Definition File it is expected to also
specify which regions in the Framework Definition file it will utilise. Figure 3-7
attempts to show the relationship between the visual regions of a Framework
Definition File, Page Templates using the regions on this particular Framework
Definition File and the various objects that can be used on the final Web site.
Please note that one of the regions on the Framework Definition File, the bottom
one, will be filled with ‘pure’ HTML; it will not host any Web User Control. This
is typical of EPiServer Solution Development; for some jobs Web User Controls
will be needed, others require only the use of HTML text.

Purpose of EPiServer Framework Definition Files

The mission for Framework Definition Files is to define the visual layout and vis-
ual ‘regions’. These regions are later referenced in the Page Template Files and
used at their discretion (or not used at all). As with most current Web sites, the
layout is made up up HTML tables and is not frame-based. Using HTML tables
is by no means a prerequisite, you can also use HTML div elements for the same
purpose. Below we’ll take a look at two ways to create a Framework Definition
File with the same visual layout as in figure 3-6. First we’ll use HTML tables and
then HTML div elements.

Framework Definition File Page Template File Web User Controls

HTML Elements
35

EPiServer Structure and Object Model
Take a look at this figure:

Figure 3-7: Start page of the example Web site to the left and the tables from its Framework Definition File to
the right.

Figure 3-7 show the start page of the example Web site in the left half and the
Framework Definition File, DefaultFramework.ascx from the example Web site,
to the right in the figure. To make the HTML tables in DefaultFramework more
visible, all borders attributes were changed from 0 to 1 (border="1"), bgcolor was
added in varying shades of grey, and all table columns were given a content of a
least one non-breaking space () and the regions’ names were included. The
impact of these non-breaking spaces and region names is small, but they do make
the rows somewhat higher. (The file was also copied in its entirety and the new
file given an extension of html and subsequently displayed in our favourite Web
browser.)

As you can see in figure 3-7 there is a close correspondence between the lay-
out in the start page of the example Web site and the layout of the Framework
Definition File. (Please make some allowance for the non-breaking spaces that
were added.)

EPiServer Regions

Regions are visual rectangles defined in Framework Definition Files and used in
Page Template Files. The purpose of Regions is two-fold: to allow the creator of
Framework Definition Files to supply default visual HTML elements and User
Controls and to allow the maker of Page Template Files to benefit from these de-
fault elements or replace them with other as she pleases.

An EPiServer Region can span one table column (<td>), one row (<tr>) or
even a whole table or more. Regions can be nested to any level desired. They are
implemented as ASP.NET Custom Controls.
36

3. Developing with EPiServer 4: Basic Insights
Regions are very easy to define in Framework Definition Files. First you state
your intention to use the name space EPiServer.WebControls and then define
Regions just like HTML/XML tags.

Example 3-6: Defining an EPiServer Region in a Framework Definition File.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

…

<EPiServer:Region id="topRegion" runat="server">

…

</EPiServer:Region>

EPiServer Regions Are Used by Means of the Content Class

Whenever a Page Template File intends to use a region in a Framework Defini-
tion File it does so by using another class from EPiServer.WebControls by the
name of Content. It looks like this:

Example 3-7: Regions are used by a Content class object.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

…

<EPiServer:Content ID="TopMenu" Region="topRegion" runat="server">

…

</EPiServer:Content>

Both the Region and Content Classes Are Part of EPiServer.WebControls

Both the Region and the Content classes are part of the important name space
EPiServer.WebControls. Classes in this name space are used in almost every
Framework Definition File and Page Template File. We will certainly be using
classes from this name space in every chapter of this book.

Page Template Files

The ultimate goal of Page Template Files is to provide dynamic content for a Web
site. Most commonly they do so by harbouring Properties for Editors to handle.
Page Template Files can use Framework Definition Files but, as mentioned
above, this is not mandatory. Remember, as we’re striving to produce HTML, a
Page Template File, either by itself or in combination with a Framework Defini-
tion File, must constitute well-formed HTML.

Using HTML Tables for Layout

For those familiar with ASP.NET, neither Framework Definition Files nor Page
Template Files hold any real secrets. Of course, since we’re working in a team
with EPiServer, a lot of EPiServer pre-built functionality is used in both types of
files.
37

EPiServer Structure and Object Model
A Very Simple Framework Definition File Using HTML Tables for Layout

A Framework Definition File implementing the visual layout of figure 3-6 could
look like this:

Example 3-8: Simple Framework Definition File using HTML tables.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="TableFramework.ascx.cs"

Inherits="development.Frameworks.TableFramework" TargetSchema="http://schemas.microsoft.com/

intellisense/ie5" %>

<html>

<head>

</head>

<body class="NormalPage" xmlns:EPiServer="http://schemas.episerver.com/webcontrols">

<form runat="server" id="Default">

<table width="750" border="1" cellspacing="0" cellpadding="0" align="center">

<tr height="80" >

<td colspan="2" align="center">

<EPiServer:Region id="topRegion" runat="server">

</EPiServer:Region>

</td>

</tr>

<tr height="520">

<td rowspan="2" width="20%">

<EPiServer:Region id="leftColumnRegion" runat="server">

</EPiServer:Region>

</td>

<td>

<EPiServer:Region id="centreRegion" runat="server">

</EPiServer:Region>

</td>

</tr>

<tr height="100">

<td>

<EPiServer:Region id="footerRegion" runat="server">

</EPiServer:Region>

</td>

</tr>

</table>

</form>

</body>

</html>
38

3. Developing with EPiServer 4: Basic Insights
As you can see, there are no Web User Controls in this Framework Definition
File, but the visual layout is just as we want it. A single HTML table is used com-
prising only three rows and a total of four table cells.

Since all the regions are defined inside table cells, and thus inside an HTML
table, whatever we choose to place in those regions will also be inside table cells.

A Very Simple Page Template Using the Very Simple Framework Definition File

Remember, when a Page Template File uses a Framework Definition File, it can
replace regions or leave them alone as the Page Template Developer pleases. A
simple Page Template File using the Framework Definition File in listing 3-8
could look like this:

Example 3-9: Page Template File using the HTML Table based Simple Framework Definition File.

<%@ Register TagPrefix="development" TagName="TableFramework"Src="~/templates/Frameworks/

TableFramework.ascx"%>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Page language="c#" Codebehind="default.aspx.cs" AutoEventWireup="false"

Inherits="development.Default" %>

<development:TableFramework ID="TableFramework" runat="server">

<EPiServer:Content region="leftColumnRegion" id="Menu" runat="server">

Stuff in the left column.

</EPiServer:Content>

<EPiServer:Content region="centreRegion" id="CentralMessage" runat="server">

Important message that goes in the centre region.

</EPiServer:Content>

<EPiServer:Content region="footerRegion" id="Footer" runat="server">

<table cellpadding="10" cellspacing="0" width="100%" border="0">

<tr>

<td align="center">Last changed 15 April 2004
© 2004 ElektroPost AB

Contact Web Master.

</td>

</tr>

</table>

</EPiServer:Content>

</development:TableFramework>

This Page Template File uses three of the four regions in the Framework Defini-
tion File: leftColumnRegion, centreRegion and footerRegion. Although simple,
this Page Template shows the effortlessness of using EPiServer Regions.
39

EPiServer Structure and Object Model
Using Visual Studio .NET to test run the result looks like this:

Figure 3-8: Effect of using HTML Tables based Framework with simple Page Template.

Accessibility Considerations Starting with EPiServer 4.3

In this version, we provide a rewritten set of page templates that has a higher ac-
cessibility according to WAI (Web Accessibility Initiative). The basic framework
is now based on HTML Div tags rather than Table tags, as previously used.

Support for formatting with H tags (H1, H2, etc.) in the editor has been add-
ed. Simply set your style rules as H1 or H1.Heading1 depending on your needs.

Using HTML Div Elements for Layout

As stated above, HTML tables are not the only way to create visual layout. In fact
it’s not that much more involved to create a Framework Definition File based on
HTML Div elements instead:

Example 3-10: Simple Framework Definition file based on HTML Div elements.

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="DivFramework.ascx.cs"

Inherits="development.Frameworks.DivFramework" TargetSchema="http://schemas.microsoft.com/

intellisense/ie5" %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<html>

<head>

<style>

#ContainerArea {

position: absolute;

left: 50%;
40

3. Developing with EPiServer 4: Basic Insights
width: 750px;

height: 700px;

margin-left: -375px;/* Half of width. */

margin-top:10px;

}

#HeaderArea {

border: solid 1px #747170;

text-align: left;

width: 100%;

height: 80px;

}

#LeftMenuArea {

border: solid 1px #747170;

width: 20%;

height: 520px;/* 700 - Header - Footer. */

float: left;

}

#ContentArea {

border: solid 1px #747170;

width: 80%;

height: 520px;/* See LeftMenu. */

float: right;

}

#FooterArea {

border: solid 1px #747170;

text-align: center;

float: right;

width: 80%;

height: 100px;

}

</style>

</head>

<body class="NormalPage" xmlns:EPiServer="http://schemas.episerver.com/webcontrols">

<form runat="server" id="Div">

<div id="ContainerArea">

<div id="HeaderArea">

<EPiServer:Region id="topRegion" runat="server">

</EPiServer:Region>

</div>

<div id="LeftMenuArea">

<EPiServer:Region ID="leftColumnRegion" runat="server">

EPiServer:Region ID="leftColumn"

</EPiServer:Region>
41

EPiServer Structure and Object Model
</div>

<div id="ContentArea">

<EPiServer:Region id="centreRegion" runat="server">

EPiServer:Region id="centreRegion"

</EPiServer:Region>

</div>

<div id="FooterArea">

<EPiServer:Region id="footerRegion" runat="server">

EPiServer:Region id="footerRegion"

</EPiServer:Region>

</div>

</div>

</form>

</body>

</html>

Depending on your personal persuasion, the Framework Definition File in exam-
ple 3-10 is either table-free or table-less. Irrespective of which it uses HTML Div
elements to create a visual layout. There are five HTML Div areas used, as op-
posed to four table cells in the table based Framework. Key to using HTML Div
elements are the positioning capabilities found in Cascading Style Sheets, CSS,
version 2. The reason for the fifth Div element is that it acts as an invisible en-
closure for the four main Div areas and allows us to position all Div areas as one
group using style sheet elements.

Changing three lines in the Page Template File listed in example 3-9 lets us
use the Div based Framework Definition File.

Example 3-11: Original Framework usage lines in Page Template File.

<%@ Register TagPrefix="development" TagName="TableFramework"Src="~/templates/Frameworks/

TableFramework.ascx"%>

…

<development:TableFramework ID="TableFramework" runat="server">

…

</development:TableFramework>

Example 3-12: Changed Framework usage lines in Page Template File.

<%@ Register TagPrefix="development" TagName="DivFramework "Src="~/templates/Frameworks/

DivFramework.ascx"%>

…

<development:DivFramework ID="TableFramework" runat="server">

…

</development:DivFramework>
42

3. Developing with EPiServer 4: Basic Insights
Running the changed Page Template File in Visual Studio .NET produces this
output:

Figure 3-9: Effect of using HTML Div elements based Framework with simple Page Template.

Figure 3-9 is very similar to figure 3-8, apart from the vertical alignment of text
in some regions.

Inner Make-Up of a Page Template File which Doesn’t Use a Framework Definition File

For the sake of completeness, we should also take a look at a Page Template File
that doesn’t benefit from the use of a Framework Definition File. There are sev-
eral to choose from in the templates folder; we’ve settled on Login.aspx which is
used on the example Web site.

Example 3-13: Parts of the Page Template File Login.aspx

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Page language="c#" Codebehind="Login.aspx.cs" AutoEventWireup="false"

Inherits="development.Templates.Login" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

<head>

<title>Login</title>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name="vs_defaultClientScript" content="JavaScript">

<meta name="vs_targetSchema" content="http://schemas.microsoft.com/intellisense/ie5">

<link rel="stylesheet" type="text/css" href="<%= EPiServer.Global.EPConfig.RootDir %>
43

EPiServer Structure and Object Model
util/styles/login.css">

</head>

<body>

<table width="100%" height="100%">

<tr>

<td valign="middle" align="center">

<form id="Login" method="post" runat="server">

…

<td class="login" valign=middle align=left>

<EPiServer:Translate Text="/login/username"

runat="server" ID="UsernameLabel" />

</td>

…

</form>

</td>

</tr>

</table>

</body>

</html>

There are at least two interesting things to note about this Page Template File. It
uses EPiServer.Global.EPConfig.RootDir to retrieve the root folder for the Web
site and it uses the class EPiServer.WebControls.Translate to make sure that any
text presented to the viewer is in the preferred language. Both represent much
recommended ways of doing things. You should always strive to make your so-
lutions language agnostic.

EPiServer Content Framework Is Not Unlike ASP.NET 2.0 Master Pages and Content Pages

One important addition to ASP.NET will be Master Pages and Content Pages.
You can find quite a lot of information about ASP.NET 2.0, project name Whid-
bey, on the Microsoft Developer Network Web site (http://msdn.microsoft
.com). Here’s what one article found at that site had to say about Master Pages
and Content Pages:

‘You’ll create a Master Page for the site layout and design and create Content
Pages for each content resource, somehow connecting them to the Master Page.
As users navigate to *.aspx resources in your site ASP.NET will serve up the re-
quested page displaying it within the layout of its associated master.’

This sounds a lot like and will work a lot like EPiServer Content Framework
and we hope that this gives you an extra incentive to start using Framework Def-
inition Files and Page Template Files.

EPiServer Name Spaces

Those of you familiar with EPiServer 3 will appreciate that EPiServer 4 preserves
a lot of the vocabulary, in spite of all other differences. We’re hoping that this will
44

3. Developing with EPiServer 4: Basic Insights
make the transition easier for both application developers and page template cre-
ators.

A .NET Framework name space is simply a way to group classes, delegates,
structures, constants, enumerations and other such information. It is up to the
developers to make this grouping as logical and consistent as possible.

These are some of the name spaces found in EPiServer 4.2:

EPiServer

EPiServer.Core

EPiServer.Core.Html

EPiServer.Filters

EPiServer.Personalization

EPiServer.PlugIn

EPiServer.Security

EPiServer.SpecializedProperties

EPiServer.WebControls

We will take a closer look at name spaces in later chapters, but suffice to say that
it is unlikely you’ll be using all of them in a single project, and perhaps some will
never be touched by a developer’s hand.

EPiServer

The EPiServer root name space contains some of the most important and central
classes, such as DataFactory, PageBase, TemplatePage, ApplicationConfigura-
tion and the Global class.

EPiServer.Core

The EPiServer.Core name space contains classes for handling page data, proper-
ties and templates. This name space also contains the important PageReference
structure which functions as a pointer to other pages in the system.

EPiServer.Core.Html

The EPiServer.Core.Html name space contains classes for text searching, Index
Server support and content parsing. This name space includes the HtmlParser
class that can parse HTML and return valid XHTML as a string or as an Xml-
Document (System.Xml.XmlDataDocument in the .NET Framework).

EPiServer.Filters

Filters are a new feature in EPiServer 4, they are used to control visual presenta-
tion of listings.
45

EPiServer Structure and Object Model
EPiServer.Personalization

The EPiServer.Personalization name space supplies classes for personalization
and subscription. The PersonalizedData class can be used to retrieve and save in-
formation about a user, as well as to store global personalized values or page spe-
cific values.

EPiServer.PlugIn

The EPiServer.PlugIn name space is used to extend the Edit and Admin interfac-
es with custom functionality.

EPiServer.Security

The classes, enumerations and delegates in the EPiServer.Security name space al-
low you to identify the current user, make your own authentication handlers and
make a highly secure site. If you want to create your own authentication scheme,
see the AuthenticationProvider class.

EPiServer.SpecializedProperties

The EPiServer.SpecializedProperties name space contains property classes for
various special edit mode requirements like the PropertyWeekDay class which
renders a list of checkboxes, for each weekday, for the user to select.

EPiServer.WebControls

EPiServer.WebControls is home to all the ASP.NET Web Custom Control class-
es that ship with EPiServer. It contains 60+ classes, from Calendar to XmlName-
Validator, for rendering page information, tree structures, page lists, etc. to a
browser. The controls have rich data binding support, the lists can be filtered and
most controls are templated.

The classes in EPiServer.WebControls are ASP.NET Web Custom Controls,
which are like ASP.NET Web User Controls but they have only code represen-
tation, there is no corresponding ASCX file. Do not be confused by the four User
Controls in templates\Units which have the same name as some Custom Con-
trols: Calendar, ChangedPages, PortalRegion and SiteMap.

Permissions and User Identities Are Handled By EPiServer (and You)

Usually when you set up an IIS Web site, you take great care in getting all folder
and file permissions set up the way you want them. When working with EPiServ-
er, handling permissions is a lot easier as handling them is part of EPiServer Ad-
46

3. Developing with EPiServer 4: Basic Insights
min mode, permissions for folders and files are set once for the root folder of the
application and then inherited through the entire sub-tree.

Figure 3-10: Handling access permissions in EPiServer Admin mode.

In figure 3-10, you can see that when handling access permissions you have im-
mediate access to the EPiServer Web Page tree and group accounts (both EPi-
Server groups and, e.g. Windows groups). (EPiServer creates two groups at
installation: WebAdmins and WebEditors.)

Should your Web site be one that’s serving the Internet, you probably won’t
have much need to change the access permissions from their default settings. Ac-
cess to the Web site for the Windows group Everyone (on the Internet) is set to
Read. It’s only when we’re discussing more interesting scenarios, from an access
permissions perspective, that account and group handling along with access per-
missions become important.

User Identities and Permissions Are Easy to Handle In Code

With groups set up and access permissions in place, you can handle both in code
for users who log on. EPiServer.PageBase is the mother class for all Page Tem-
plates. Being itself a descendant of System.Web.UI.Page, there’s a public property
User which holds information about the user who is currently logged on. Page-
Base.User is simply a pointer to an interface, IPrincipal, which is implemented by
GenericPrincipal and WindowsPrincipal. More important is the property Page-
Base.CurrentUser which is an instance of EPiServer.Security.UnifiedPrincipal.
UnifiedPrincipal gives you access to a lot more information than IPrincipal, e.g.
The Security Identifier, SID, for the account that was used to log on and IP set-
tings along with per-user cache settings.

Interface IPrincipal declares the interesting property Identity and method
IsInRole. From Identity, the name of the user account is retrieved by calling Iden-
tity.Name; group membership is tested with the boolean function IsInRole.
47

EPiServer Structure and Object Model
For testing permissions, there is a method called CheckAccess. Also, if you
want to deny the current user access for some reason you can call the method Ac-
cessDenied.

Example 3-14: Using PageBase.AccessDenied.

if (CurrentUser.UserData == null) {

AccessDenied();

}

The code in example 3-14 denies further processing if the current user is the
Anonymous user, i.e. not logged in with an acknowledged user account.

EPiServer System Settings in the web.config File

Just like other ASP.NET applications, EPiServer stores settings in the web.config
file in the root folder for the solution. Some of the interesting settings are found
in system.web section and deal with such matters as authentication method, de-
bug and trace settings.

In the section appSettings we find more specific EPiServer settings, some of
which are described in table 3-5.
Table 3-5: EPiServer settings in web.config (not comprehensive).

Setting Name Purpose

EPsConnection Database connection string.

EPnStartPage ID of the Web Page which serves as the start page for
the site.

EPsRootDir Root folder for the Web site, when installed to a vir-
tual folder.

EPsHostUrl Uniform Resource Locator, URL, for the host.

EPnUserCacheTimeout Timeout limit, in minutes, for user cache.

EPsLanguage EPiServer language settings, current versions allow
one of ‘DK’, ‘EN’, ‘FI’, ‘NO’ or ‘SV’; meaning Dan-
ish, English, Finnish, Norwegian or Swedish.

EPnLocale Locale ID, following the Windows setting: 1030
(0x0406) for Denmark; 2057 (0x0809) for United
Kingdom; 1035 (0x040B) or 2077 (0x081D) for Fin-
land; 1044 (0x0414) or 2068 (0x0814) for Norway and
1053 (0x041D) for Sweden. Please note that the locale
information is loaded with the Web page.
48

3. Developing with EPiServer 4: Basic Insights
Many of the system settings are under administrator control in the EPiServer Ad-
min mode as shown in this picture:

Figure 3-11: EPiServer System Settings (from the Example Web site).

Accessing System Settings from Code

There is more than one way to access EPiServer system settings from code. Your
code will always have access to EPiServer.Global which is instantiated by Glo-
bal.asax. Its property EPConfig allows access to the system settings. EPConfig is
of the type EPiServer.ApplicationConfiguration.

Web Pages created from EPiServer Page Template Files are descendants of
the class EPiServer.PageBase. Among the attributes for PageBase is Configura-
tion, which is of the same type as EPConfig.

In other contexts, you might want to utilise the Page property (common to all
Web pages descending from System.Web.UI.Control), which is a reference to the
page that contains the server control (ASP.NET Web Controls are server con-
trols). (EPiServer.PageBase inherits System.Web.UI.Page which is a descendant
of System.Web.UI.Control.)

Several of the system settings are also implemented with their own identifiers,
e.g. RootDir and StartPage. In other words, Configuration.RootDir is equivalent
to Configuration["EPsRootDir"] and Configuration.StartPage is akin to Config-
uration["StartPage"] (the former is of type PageReference, the latter of type int).

Some examples might help to clarify things:

Example 3-15: Using EPConfig in the code-behind file for a Web User Control (ascx.cs file).

private void Page_Load(object sender, System.EventArgs e) {

IPrincipal user = Context.User;

if (user != null && user.Identity.IsAuthenticated) {

EPsSiteName Web site name.

Table 3-5: EPiServer settings in web.config (not comprehensive).

Setting Name Purpose
49

EPiServer Structure and Object Model
Logout.Visible= (EPiServer.Global.EPConfig.Authentication ==

System.Web.Configuration.AuthenticationMode.Forms);

} else {

DisplayLoginLink();

}

}

Example 3-16: Using EPConfig in the code-behind file for a Web Form (aspx.cs file).

XmlNode title= doc.CreateElement("title");

title.InnerText= EPiServer.Global.EPConfig.SiteName;

channel.AppendChild(title);

XmlNode link= doc.CreateElement("link");

link.InnerText= EPiServer.Global.EPConfig.HostUrl + EPiServer.Global.EPConfig.RootDir;

Example 3-17: Using EPConfig in HTML for a Web User Control (ascx file).

<IFrame src="<%= EPiServer.Global.EPConfig.RootDir %>Edit/NewPage.aspx<%= "?mode=" +

Request["mode"] + "&id=" + Request["id"] %>" Width="100%" Height="100%" Name="EditPanel"">

</IFrame>

Example 3-18: Using EPConfig in the code-behind file of a Web User Control (ascx.cs file).

private string GetSystemLanguage() {

if (IsValue("PageLanguageID")) {

return (string) CurrentPage["PageLanguageID"];

} else {

if (EPiServer.Global.EPConfig["EPsLanguage"] != null) {

return (string) EPiServer.Global.EPConfig["EPsLanguage"];

}

}

return "EN";

}

Example 3-19: Using Configuration in the code-behind file of a Web User Control.

private void Page_Load(object sender, System.EventArgs e) {

if (Configuration.Authentication == System.Web.Configuration.AuthenticationMode.Forms) {

CookieLogin.Text = "/cookie/usageloginform";

} else {

CookieLogin.Text = "/cookie/usageloginwindows";

}

}

50

3. Developing with EPiServer 4: Basic Insights
Example 3-20: Using Configuration in the code-behind file of a Web User Control.

protected string GetTitleString()

try {

if (this.Title.Length > 0) {

return this.Title + this.TitleSeparator + Configuration.SiteName;

} else {

return CurrentPage.PageName + this.TitleSeparator + Configuration.SiteName;

}

catch {

return String.Empty;

}

}

Example 3-21: Using Configuration in JavaScript in an ASP.NET Web Form (for EPiServer Edit mode).

window.StartPage = <%= Configuration.StartPage.ID %>;

window.RootPage = <%= Configuration.RootPage.ID %>;

window.WastebasketPage = <%= Configuration.Wastebasket.ID %>;

Example 3-22: Using Configuration in an ASP.NET Web Form (for EPiServer Edit mode).

<EPiServer:ExplorerTree PublishedStatus="Ignore" ShowIcons="False" EnableVisibleInMenu="False"

PageLink=<%# Configuration.RootPage %> ShowRootPage="True"

ClickScript= "SetLocalValues('{PageLink}', '{PageName}');" id="Explorertree1" runat="server" />

Example 3-23: Using Configuration in a code-behind file that’s a descendant of EPiServer.PageBase

…

mail.Body += "\n\n" + Configuration.HostUrl + CurrentPage.LinkURL;

…

Configuration.InitSmtpServer();

Example 3-24: Using Configuration in HTML.

<mobile:link runat=server NavigateUrl=

'<%#Configuration.RootDir+"templates/mobile.aspx?id="+Container.CurrentPage.PageLink.ID %>'

ID="Link1"><%#Container.CurrentPage.PageName%>

</mobile:link>

Example 3-25: Using the Page property in HTML.

<a href="<%= ((EPiServer.PageBase) Page).Configuration.RootDir %>" target="_parent">

Example 3-26: Using the Page attribute in a code-behind file.

protected string HeaderImage {
51

EPiServer Development
get {

EPiServer.PageBase PageBasePage = (EPiServer.PageBase) Page;

if (PageBasePage.CurrentPage.Property.Exists("HeaderImage")) {

return (string) PageBasePage.CurrentPage["HeaderImage"];

}

return PageBasePage.Configuration.RootDir + "images/header.gif";

}

}

You Can Add Your Own Settings

Using the Item method of class ApplicationConfiguration makes it possible to
add your own settings to web.config. How you do this is described on page
page 156.

EPiServer Development

Developing EPiServer Solutions is a Little Different to Developing ASP.NET Solutions

As EPiServer 4 is based on and uses ASP.NET, developing with EPiServer also
is based on and uses ASP.NET. However, there are important differences as we
shall see. Although ASP.NET comprises both Web Services and Web Forms,
we’ll be concentrating on Web Forms, i.e. building Web sites using EPiServer,
ASP.NET Web Forms and Controls. (EPiServer 4 is also implemented as a Web
Service; more on this in a later chapter.)

Tools Needed

Before we can start developing solutions with EPiServer 4, we need several items
of software:

EPiServer 4.20, or any later version

EPiServer Software Development Kit, SDK

Microsoft .NET Framework, version 1.0 or 1.1 (EPiServer 4.3 and later
requires version 1.1 of the Framework)

ASP.NET (included in Microsoft .NET Framework)

Visual Studio .NET (or Visual Studio .NET 2003)

Microsoft SQL Server 2000 or Oracle Server 9i

The EPiServer products needed can be acquired from ElektroPost at http://
www.episerver.com.
52

3. Developing with EPiServer 4: Basic Insights
Developing ASP.NET Solutions

When developing ASP.NET Web Forms solutions, developers typically only
seem to use Visual Studio .NET and Internet Information Services, IIS. Less vis-
ible, but very active indeed are both Microsoft .NET Framework and the under-
lying operating system.

Developing Solutions with EPiServer

So, by association, developing solutions with EPiServer must have a great deal in
common with ASP.NET Web Forms application development. This is also the
case.

EPiServer’s Built-In Web User Controls

The folder templates\Units contains more than thirty ASP.NET Web User Con-
trols which help with such chores as displaying and handling menus, Menu.ascx,
MenuItem.ascx and TopMenu.ascx, and also printing, PrintFunctions.ascx, and
much more.

You will also find a handful of Web User Controls in the admin and edit fold-
ers. These controls are used by EPiServer Admin and Edit modes, respectively.

EPiServer Base Classes and Interfaces

EPiServer ships with a number of useful classes, ready for you to benefit from.
Paramount among them is of course the Region, its counterpart Content, and the
Property class. The Property class is found in the name space EPiServer.Web-
Controls. This is, as should be evident by now, a versatile class whose objects can
provide a home for many different types of data.

Obviously the EPiServer Base Classes are important to an EPiServer devel-
oper. Among the Base Classes, perhaps the two most important are PageBase and
PageData

The PageBase class is an abstract class used as a base class for one of the more
specialised derived classes like SimplePage or TemplatePage. The latter is the
most used base class for templates in EPiServer. All Web forms that are to be
used as Page Templates in EPiServer must inherit from SimplePage or a descend-
ant class.

Template logic often uses the PageBase class members to retrieve information
about other aspects of the EPiServer solution, such as system configuration
through the Configuration property, the user who is currently logged on (through
the CurrentUser property), etc.

The PageData class contains information about a specific page. This includes
the name of the page (PageName), reference (PageLink), URL (LinkURL) and
more.

Other useful classes are PropertySearch and Content.
When using classes in EPiServer.WebControls, a reference to the EPiServer

WebControls schema must be added in order for Visual Studio .NET IntelliSense
53

EPiServer Development
to work properly. The reference is often made part of an HTML Body tag or a
Table tag.

Example 3-27: A reference to EPiServer WebControls schema added to an HTML Body tag.

<body class="NormalPage" xmlns:EPiServer="http://schemas.episerver.com/WebControls">

Example 3-28: A reference to EPiServer WebControls schema added to an HTML Table tag.

<table cellspacing="0" width="100%" xmlns:EPiServer="http://schemas.episerver.com/WebControls">

Please note: ‘schemas.episerver.com’ should be all lower case (following Internet
tradition).

Extending EPiServer 4 Is a Lot Easier

In order to extend EPiServer 3, developers had to familiarise themselves with the
source code for EPiServer, its include files and source files. Now, with EPiServer
4 all this has changed as EPiServer 4 has been developed in accordance with Mi-
crosoft’s guidelines for .NET Framework. This means that you’ll find everything
you need in EPiServer 4 Software Development Kit, SDK, e.g. EPiServer’s name
spaces that you’ll be using. Extending EPiServer 4 is as easy as inheriting from
any base class and extending its functionality using new methods.

It should be evident from figure 3-3 that EPiServer itself is an ASP.NET ap-
plication comprised of ASP.NET Web Forms pages (aspx files) with their corre-
sponding code behind files. Used on the Web Forms pages are ASP.NET User
Control (ascx files) and standard ASP.NET Web Controls. In addition we also
find EPiServer Base Classes, which make up the bulk and core of EPiServer.

One, somewhat over-simplified, way of describing EPiServer 4 would be to
say that it is a .NET Framework Assembly written in C# having a graphical user
interface implemented in ASP.NET and using a database back end (either Micro-
soft SQL Server or Oracle 9i). To an application developer, the Assembly, com-
prising name spaces, classes and even objects, would attract the most interest.

Performance Considerations

One of the highest priorities in developing EPiServer 4 was its ultimate perform-
ance on customers’ Web sites. When developing solutions with EPiServer there
are only a few rules to abide by:

When working with Page data, always use the static property EPiServer.Glo-
bal.EPDataFactory

Beware of shared data

Be careful with personalization. It’s a great feature but may result in heavy
demand on the database

We will present a few tools and methods to enhance performance in a later chap-
ter, 5. Avoiding Errors, Testing and Debugging.
54

3. Developing with EPiServer 4: Basic Insights
55

EPiServer Development
56

4
Mimicking the Example Web Site

Let’s Create a Web Site by Mimicking the Example Site

In this chapter we’ll recreate the example Web site that ships with EPiServer 4
and can be installed as the last step in the installation process. In doing this we’ll
guide you through the process step by step, just as if this were the first EPiServer
Web site you’ve ever created.

During the site creation process, you’ll be exposed to, and guided through, the
Admin and Edit parts of EPiServer. In fact, creating your first site you will get a
real feel for many of the possibilities and inherent power in EPiServer. The fact
is: we won’t be using Visual Studio .NET at all in this chapter!

Our two Web sites will be called Example and Mimic respectively. We’ll start
by creating and inventorying the Example Web site. We then create the Mimic
Web site and make it look and act much like Example.

To conclude the chapter, we’ll take a closer look at the Example Web site and
see just how Framework Definition Files, Page Template Files, Web Controls and
HTML cooperate.

Game Plan

First we’ll install EPiServer and have the installation process create the example
Web site as a last step. This Web site will be used as a template for our first Web
site. We’ll create an identical Web site using the Admin and Edit parts of EPiS-
erver.

As EPiServer Web sites revolve around page templates, page types, with their
properties, and displayed pages, we’ll start with taking an inventory of all page
types used in the example Web site.

Install EPiServer 4 and Let It Create the Example Web Site

We used the Web site name ‘Example’ for the first copy of EPiServer. You will
see this in the figures below.

It doesn’t matter whether you elect to create a new Web site or simply a new
virtual folder. We installed to http://localhost/Example.

So, please install your first copy of EPiServer. When EPiServer is installed, a
Web page will be presented, headlined ‘Install basic content’, and you should then
57

Install EPiServer 4 and Let It Create the Example Web Site
select ‘English sample templates with all templates installed’ and English for sys-
tem language. Clicking on the button labelled ‘Complete installation’ will have the
desired effect of completing the installation.

Next we’ll be using EPiServer Admin and Edit modes to inventory the Exam-
ple Web site.

Inventory Example Web Site

The Example Web site provided shows off some of EPiServer’s capabilities.

Figure 4-1: Example Web site in Internet Explorer.

Figure 4-1 shows the first page of the example Web site. Among the components
are:

Clickable invisible GIF picture, go to start page function (upper left corner)

Main menu (horizontally across, below the top picture)

News list (left margin area)

Main editor area (centre)
58

4. Mimicking the Example Web Site
Tool-bar with print, e-mail, site map, register user and log-on buttons (to the
right, below the main menu)

Calendar with events (below tool-bar)

Search function (upper right corner)

This example Web site is not a dummy. It is fully operational and can be added
to and changed at will.

Page Templates, Page Types and Their Properties, Web Pages, Folders and the Database

Being an example Web site, it’s only natural that it uses a lot of Page Templates
(aspx files), but most of these are actually only included for show; they’re not used
to the extent they could be.

Page Templates which Really are Used in the Example Web Site

If we distinguish between the Page Templates which really are used in their own
right and Page Templates that are included just to to demonstrate their capabili-
ties, we find that the example Web site uses these Page Templates:

Depending on your previous experience with Web site management, this may
seem like a lot of Page Templates, but let’s take a look at how many Page Types
are created from each Page Template. Notice that in the case of the example Web
sites, we’ve been fortunate enough to be able to base several Page Types on a sin-
gle Page Template. This is probably not going to be your experience, as one Page
Type created from on Page Template File is more the norm.

Table 4-1: Essential Page Templates in the Example Web site.

Page Template Name Page Template Name

AlphaNumericListing.aspx Calendar.aspx

ChangedPages.aspx Default.aspx

Exchange.aspx ExternalWebPage.aspx

News.aspx NewsGroup.aspx

Page.aspx PageRoller.aspx

Portal.aspx Profile.aspx

ProfileFinder.aspx Search.aspx

SiteMap.aspx Subscribe.aspx
59

Install EPiServer 4 and Let It Create the Example Web Site
Page Types Are Created from Page Templates–Page Types Own Page Templates

When you’re new to EPiServer, it seems natural to think that Page Templates be-
get Page Types, which in turn beget Web Pages. However, as you become more
familiar with EPiServer, you might start thinking of Page Types as above Page
Templates in a kind of hierarchy.

Figure 4-2: EPiServer Page Type viewed as ‘Queen of the hill’.

An EPiServer developer spends most of her time using Visual Studio .NET, but
a fair amount of time is also spent in EPiServer Admin mode creating Page Types
from Page Templates. Table 4-2 lists the Page Types in the example Web site and
the Page Templates from which they are created.
Table 4-2: Page Types in the example Web site.

Page Type Page Template Used to Created Page Type

Alphabetical table of contents AlphanumericListing.aspx

Calendar Calendar.aspx

Calendar event Page.aspx

Changed recently ChangedPages.aspx

Discussion forum Conference.aspx

EPiServer portal Portal.aspx

Exchange folder Exchange.aspx

External link ExternalWebPage.aspx

File listing FileListing.aspx

Flash page FlashPage.aspx

Form page Form.aspx

Page Type

Framework Page Template

EPiServer Properties
60

4. Mimicking the Example Web Site
The Page Types SysRecycleBin and SysRoot are only used in Edit mode; in fact
they’re part of Edit mode. Page Type Start page is the only Page Type created
from a Page Template outside the templates folder. It is created from
Default.aspx in the root folder of the example Web site. This makes a lot of sense,

Index SiteMap.aspx

Mobile page MobileInfo.aspx

My Settings PersonalSettings.aspx

News groups, category NewsGroup.aspx

News groups, main page NewsGroup.aspx

News groups, news group NewsGroup.aspx

News groups, news item NewsGroupItem.aspx

News list News.aspx

News page Page.aspx

Ordinary web page Page.aspx

Personal profile Profile.aspx

Profile search ProfileFinder.aspx

Register users Register.aspx

RSS source RssProvider.aspx

Search Search.aspx

Slide show PageRoller.aspx

Start page Default.aspx

Subscription Subscribe.aspx

Vote Form.aspx

Table 4-2: Page Types in the example Web site.

Page Type Page Template Used to Created Page Type
61

Install EPiServer 4 and Let It Create the Example Web Site
since the Start page is under the control of Internet Information Services, IIS, in-
itially.

Figure 4-3: Properties for example Web site showing Default.aspx to be the default Web page.

Some Page Types Have Common Page Templates

Some of the Page Templates are used to create more than one Page Type, as
shown in table 4-3.

The leverage for the example Web site may not be the most impressive one: 26
Page Templates are used to create 32 Page Types, but when we turn our attention
to the actual Web Pages, the story takes a more interesting turn. But first let’s take
a look at the properties used in the example Web site.

Properties Used for Page Types

The fastest way to get a list of all properties is to use the tables directly. There are
two tables of interest for the properties: tblPageDefinitionType and tblPageDef-
inition. Table tblPageDefinitionType contains basic property type and tblPage-
Definition user-defined properties. There are 101 distinct properties found in
tblPageDefinition and thus 101 different properties are used to create the 32 Page

Table 4-3: Page Templates used to create more than one Page Type in the example Web site.

Page Template Name Page Types created from Page Template

Form.aspx Form page; Vote; (2 Page Types)

NewsGroup.aspx News groups, category; News groups, main page; News
groups, news group; (3 Page Types)

Page.aspx Calendar event; News page; Ordinary web page; (3 Page
Types)
62

4. Mimicking the Example Web Site
Types in the example Web site, averaging 3+ properties to every Page Type. List-
ing only those properties that appear more than twice we get this table:

Dynamic Properties Used

The example Web site uses the dynamic properties listed in table 4-5.

Table 4-4: The most commonly used properties on Page Types.

Property Name Number of Times Used
on Page Types Base Property Type

MainBody 22 LongString

MainIntro 15 String

WriterName 12 String

ListingContainer 9 PageReference

EPSUBSCRIBE 9 Boolean

ListingCount 7 Number

AllowInPortal 6 Boolean

PersonalizableProperties 6 Selector

ListingType 5 PageType

MetaKeywords 5 String

EPSUBSCRIBEHIDDEN 4 Boolean

MetaDescription 4 String

Table 4-5: Dynamic properties used in the example Web site.

Property Name Data Type Comment

HeaderImage URL to image Header image on the Web site (at the
top of the Web site)

MainMenuContainer Page Menu tree place from where menus
will be displayed on the selected page

MainSearchPage Page Global search page

MetaKeywords String Comma-separated list of search words

RegisterPage Page Personal profile page in quick links
63

Install EPiServer 4 and Let It Create the Example Web Site
Of the dynamic properties used on the example Web site, we’ll re-create only
MainSearchPage on our mimicking Web site. As we’ll see later, there will be a
highly visual ‘scar’ on the Web site as long as MainSearchPage is not defined and
used.

Properties Used on Start Page

The properties used on the Start page determine what properties we have to add
to the Mimic Web site. They are summarised in table 4-6.

RightListingContainer Page Starting point for the help list to the
right.

Sitemap Page Site map page in quick links

Table 4-6: Properties used on Page Type Start page (start page for the Web site Example).

Property Name Purpose

MainImage Image to display on the start page (in MainRegion).

MainBodyHeading Heading for the main body text of the start page (in MainRe-
gion).

MainBody Text, images, documents, tables, etc. for MainRegion.

NewsContainer News listing page (in MenuRegion).

NewsCount Number of news items to display (in MenuRegion).

EventsContainer Specify the page you want to download calendar events from
(in RightColumnRegion).

EventsCount Using an integer, specify how many events are to be dis-
played.

ListingContainer Specify the page you want to fetch the listing from.

ListingCount Using an integer, specify the number of pages to be dis-
played in the listing.

MetaDescription Describe the content of the page.

MetaKeywords Specify a comma-separated list of search words that match
this page.

Table 4-5: Dynamic properties used in the example Web site.

Property Name Data Type Comment
64

4. Mimicking the Example Web Site
Of these properties, EventsContainer is going to need some extra attention due
to the fact that any Page Type pointed to by EventsContainer must have the
properties EventStartDate and EventStopDate (this is an EPiServer requisite for
calendar type information handling and we’ll be discussing such matters in later
chapters in more detail). This criterion is met by creating a Calendar event Page
Type and adding those very properties to that Page Type. In Edit mode, a chain
will then be created in which EventsContainer on the Start page will be set to
point to a Calendar ‘mother’ page, which in turn has Calendar event pages for
children.

Web Pages Created from Page Types

To see what Web Pages are created from the available Page Types, we enter EPi-
Server Edit mode for the example Web site.

Figure 4-4: Example Web site in Edit mode, first level of page tree mostly expanded.

In all there are 102 Web pages in the example Web site. Of these, 86 are created
from only 14 different Page Types, averaging 6+ Web Pages for each of the 14
Page Types. Taking this a step futher, we notice that the Page Template Page.aspx
65

Install EPiServer 4 and Let It Create the Example Web Site
is ultimately used to create 48 Web pages (as it’s used to create three of the Page
Types that are used to create multiple Web pages).

Folders and Database Tables Used

Of the three Page Templates, Page Types and Web Pages, only Page Templates
have a physical representation as files in folders. We already know which folder
holds the most Page Templates: templates. Only the start page, Default.aspx, re-
sides in another folder, the root folder for the Web site. One obvious deduction
is that Page Types and Web Pages aren’t stand-alone ASP.NET Web Forms; they
cannot be handled in Visual Studio .NET.

So if Page Types and Web Pages don’t live in folders, presumably they live in
the database? This is certainly true; Page Types live in the table tblPageType and
Web Pages live in the table tblPage. These tables are supplemented by two addi-
tional tables: tblPageDefinition and tblProperty, which hold the properties de-

Table 4-7: Page Types used to create more than one Web page for the example Web site.

Page Type Name Number of Web Pages
Created from Page Type

Page Template Used to
Create Page Type

Ordinary web page 34 Page.aspx

News page 8 Page.aspx

Calendar event 6 Page.aspx

Personal profile 6 Profile.aspx

News groups, news group 5 NewsGroup.aspx

News list 5 News.aspx

Discussion forum 4 Conference.aspx

Exchange folder 3 Exchange.aspx

External link 3 ExternalWebPage.aspx

Mobile page 3 MobileInfo.aspx

News groups, category 3 NewsGroup.aspx

Calendar 2 Calendar.aspx

Index 2 SiteMap.aspx

Slide show 2 PageRoller.aspx
66

4. Mimicking the Example Web Site
fined for a Page Type and content of the properties for a Web Page, respectively.
Let’s summarise this in a table:

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install

We are now done with the Example web site, although you might want to keep
it around for comparative purposes.

Please install a second copy of, or re-install, EPiServer. Name this second
Web site/virtual folder Mimic. Instead of installing the example Web site, ‘Eng-
lish sample templates with all templates installed’, this time select ‘Only start page

Table 4-8: Page Templates, Page Types and Web Pages in folders and the database.

Folder Definition Table Properties Table

Page Templates templates — —

Page Types — tblPageType tblPageDefinition

Web Pages — tblPage tblProperty
67

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install
without any Page Types or content’. Actually there will be some content, we
won’t have to re-create the Example Web site from scratch.

Figure 4-5: Visual appearance of Web site when selecting ‘Only start page without any Page Types or content’.

As can be seen in figure 4-5, there is quite a lot of content in a Web site even when
selecting ‘Only start page without any Page Types or content’ at the end of instal-
lation. However, most functionality is purely visual. You cannot use the mail
functionality and there’s no site map and no user registration. And, the visual
‘scar’ that was mentioned before is evident in the upper right corner. Near the
search tool button, the text ‘Quicksearch isn't properly configured. (Dynamic
property "Global search page" must have been defined)’ is displayed. Before we
fix this, let’s inventory the supposedly empty Web site.

Inventory ‘Empty’ Web Site

Figure 4-5 shows the first page of the ‘empty’ Web site. Among the components
are:

Clickable invisible GIF picture, go to start page function (upper left corner)

Main editor area (centre)
68

4. Mimicking the Example Web Site
Tool-bar with print, e-mail, site map, register user and log-on buttons (to the
right, below the main menu). Only some of the tool buttons are working

Search function (upper right corner), displayed, but not working

Missing from this Web site compared to the example Web site are:

Main menu (horizontally across, below the top picture)

News list (left margin area)

Calendar with events (below tool-bar)

Search function (upper right corner), operational

Page Templates, Page Types and Their Properties, Web Pages, Folders and the Database

The only Page Type currently available for Mimic is Start page, so we’re not sur-
prised to find that the Page Template used for Start page is /Mimic/default.aspx.

Properties Used on Page Type Start Page

We find eleven static properties on the Start page:

Dynamic Properties Used

As you might have guessed already, there are no defined Dynamic Properties for
this Web site.

Table 4-9: Properties used on Page Type Start page.

Property Name EPiServer Property Type

EventsContainer Page

EventsCount Integer

ListingContainer Page

ListingCount Integer

MainBody LongString

MainBodyHeading String

MainImage URL to image

MetaDescription String

MetaKeywords String

NewsContainer Page

NewsCount Integer
69

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install
Web Pages Created from the Single Page Type

To see what Web Pages are created from the available Page Types, we enter EPiS-
erver Edit mode for the Mimic Web site. No surprise here either: there’s a single
Web Page, appropriately named ‘Start page’.

Order of Business

When enhancing the Mimic Web site to look and behave like the Example Web
site, there’s really no preferred way or order to go about the tasks. This is the pro-
posed order of business:

1. Create Dynamic Property ‘Global search page’, assign this to Start page and
give it a value.

2. Create the same Page Types that exist in the Example Web site

3. Create the same Web Pages that exist in the Example Web site.

We happen to know that we’ll have to create a new data type, but let’s deal with
that as we get to that particular Page Type.

Create and Use Dynamic Property ‘Global search page’

The name of the ‘Global search page’ Dynamic Property is MainSearchPage and
its EPiServer data type is Page (see table 4-5 on page 63).

Open up Mimic Admin mode, click on ‘Dynamic properties’ in the left pane
and then on ‘Add property’ in the right pane. Assign Name, Heading and Data
type as appropriate, then save. Figure 4-6 shows the list of Dynamic Properties
after adding MainSearchPage.

Figure 4-6: Dynamic Property MainSearchPage added.

Switch to Edit mode, click on the tool button (Edit mode), and assign Main-
SearchPage to Start page by first clicking on Start Page and then on the tool but-

ton (Edit dynamic properties). Let the Global search page be the Start page
(this is the only possible choice at this time). This will get rid of the annoying error
text on the start page and also, coincidentally, of the Search function altogether.
Don’t worry, we’ll bring it back when we have a proper Search page.

Create the Same Page Types That Exist in the Example Web Site

Actually, we won’t create all the Page Types that exist in the Example Web site,
as most of them are only there to serve as examples themselves.
70

4. Mimicking the Example Web Site
We’ll Cheat a Little

Our objective in mimicking the Example Web site is to show some of the power
of EPiServer and not to have you perform lots of tedious chores. To this end
we’ll cheat in two areas:

We are going to create a Page Type with the most commonly used Properties
and then copy from this Page Type, leaving some extraneous Properties

We are not going to create all of the Page Types that exist in the Example
Web site, and more specifically we won’t bother with portals just now

Create a Page Type to Hold Most Common Properties

On the Example Web site, the most commonly used Properties are found in table
4-4 (on page 63). We are going to make a Page Type whose sole purpose is to
hold all of these properties and then allow us to copy new Page Types using this
as a template, thereby eliminating some work for ourselves.

Open Mimic in Admin mode, click on ‘Create new page type’ in the left pane
and then fill in the fields as follows::

Filling in ‘Description’ isn’t absolutely necessary, but we like to do it as it forms
part of the ever-important documentation.

We won’t add Properties in the same order as in table 4-4, but rather with an
eye on how Editors use the properties, as the properties we add will be displayed
to Editors in the order we choose. Furthermore, the property MetaKeywords will
not be added to Template Type, as we will let the Dynamic Property MetaKey-
words be used instead. Also, the properties AllowInPortal and Personalizable-
Properties will be left out since portals are beyond the current scope.

When you’re ready, add the properties found in the list below in the same or-
der to Template Type. Leave all properties under heading Information. Click the
check box ‘Searchable property’ for all properties that are either Strings or Long
strings, i.e. MainIntro, MainBody and WriterName.

Table 4-10: Template Type information.

Field Name Value

Name Template Type

Description Page Type to hold most commonly used Properties
(not available in Edit mode).

File Name /Mimic/templates/Page.aspx

Available in Edit mode No (deselect)

Sort index 100 (leave as is)
71

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install
MainIntro
Heading: Introduction
Help text: Introductory text often shown in listings
Data Type: String

MainBody
Heading: Editor
Help text: Content of your page. Here you can enter text, insert images, doc-
uments, tables, etc.
Data Type: Long string

WriterName
Heading: Writer
Help text: Name of the person who is responsible for the content
Data Type: String

ListingContainer
Heading: Fetch listing from
Help text: Specify the page you want to fetch the listing from
Data Type: Page

ListingType
Heading: Type of page in the listing
Help text: Specify the page type that is to be shown in the listing
Data Type: Page type

ListingCount
Heading: Display number of pages in the list
Help text: Using an integer, specify the number of pages to be displayed in
the listing
Data Type: Integer

Create Page Type ‘Ordinary web page’

As with the Example web site, we’ll also be using ‘Ordinary web page’ for most
Web Pages in Mimic. Create the Page Type by copying Template Type. In Admin
mode, click on Copy page type in the left pane, copy from Template Type. Name
the new Page Type ‘Ordinary web page’ and enter ‘Multi-purpose Page Type us-
ing DefaultFramework’ for description. The properties we need on Ordinary web
page are already present, so we won’t change anything.

Create Page Types ‘Calendar’ and ‘Calender event’

As noted earlier, we need a Page Type created from a Page Template that includes
properties such as Calendar.aspx. Create a new Page Type, this time by selecting
‘Create new page type’ in the left pane, with the following information:
72

4. Mimicking the Example Web Site
Name: Calendar
Description: Mother page for calendar events.
File Name: /Mimic/templates/Calendar.aspx
Available in Edit mode: Yes
Sort index: 100 (leave as is)

We chose not to copy Template Type, as none of the properties needed for the
Calendar Page Type are present in Template Type. Add these properties to the
Calendar Page Type:

nDaysToRender
Heading: Number of days to show in calendar
Help text: Specify an integer for the number of days you want to show in the
calendar.
Data Type: Integer

CalendarType
Heading: Type of pages to show in calendar
Help text: Specify the Page Type to use for calender event
Data Type: Page type

CalendarContainer
Heading: Show calendar information from
Help text: Specify a place in the menu tree from where calendar will be dis-
played
Data Type: Page

Now, Calendar must point to a Page Type that includes the properties Event-
StartDate and EventStopDate. For this Page Type, we’ll be using the Page Tem-
plate Page.aspx and simply adding the proper properties to it. We wish to be able
to describe the event using MainIntro and Mainbody, so we’ll use Template Type
as base again. Create a new Page Type by copying Template Type:

Name: Calendar event
Description: Single calendar event.
File Name: /Mimic/templates/Page.aspx
Available in Edit mode: Yes
Sort index: 100 (leave as is)

Add these properties to Calendar event:

EventStartDate
Heading: Start date and time for this event.
Help text: Specify date and time when this event begins.
Data Type: Time/Date

EventStopDate
Heading: Stop date and time for this event.
73

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install
Help text: Specify date and time when this event is over.
Data Type: Time/Date

To underline the importance of these two properties, use the tool button Move

up, , to place them at the top of the Properties list.
(In the Example Web site, this Page Type also has the ability to cater for re-

curring events; this possibility will be left as an exercise for the reader.)
We will come back to Admin mode shortly, after a short interlude to create a

few top-level Web Pages.

Interlude: Create the Top-Level Web Pages

Just to break up the Admin mode session, we’ll direct our attention to Edit mode
and create the top-level Web Pages.

Switch to Edit mode and create the following Web Pages, base all on Ordinary
web page, in the same order as in the list. Right-click on ‘Start page’ and select
Create new in the shortcut menu. Select Ordinary web page, name the new Web
Page and then click on ‘Save and publish’.

Links

EPiServer Portal

News Groups

Tips & Tricks

Inspiration

Templates

If you try to view the Start page, you’d most likely see an error page stating that
‘PageType must include properties EventStartDate and EventStopDate’. This is
due to the property EventsContainer (Download calendar events) not being han-
dled correctly. To remedy this we’ll create a new child Web Page for Inspiration
of Page Type Calendar and set its pertinent attributes correctly and, eventually,
set EventsContainer on the Start Page to point to the new Calendar Web Page.

Create a new child Web Page for Inspiration by right-clicking on Inspiration
and then selecting Create new Web page in the shortcut menu. Make the new
Web Page from Page Type calendar and name it ‘Calendar’. Edit the Calendar
Web Page and enter the following information:
Table 4-11: Important property settings for Calendar Web Page.

Property Caption Value

Number of days to show in calendar 7

Types of pages to show in calendar Calendar event
74

4. Mimicking the Example Web Site
Save and publish this information and then edit the Start page and set the prop-
erty ‘Download calendar events’ to point to the Calendar Web Page.

Figure 4-7: Pointing the ‘Calendar’ Web page.

Switch the Web site to view mode and make sure that everything works as expect-
ed. Note for example what happens to the QuickSearch function whenever you
navigate away from the Start page: it appears in the upper right corner and when
the tool button ‘Quick search’, , is pressed the Start page is loaded. This is ex-
actly as we specified: we set the Dynamic Property ‘Global search page’ to the
Start page.

Now that we’ve got peace of mind, let’s create some more Page Types.

Create the Last Page Types

To make Mimic look really snazzy like the Example Web site, we need a new list
function. To this end we’ll create two new Page Types: News list and News page.
The former is based on Page Template News.aspx.

Create a new Page Type based on News.aspx by copying Template Page:

Name: News list
Description: Mother page for news items (pages).
File Name: /Mimic/templates/News.aspx
Available in Edit mode: Yes
Sort index: 100 (leave as is)

We won’t need all properties; if you like you can remove all but ListingContainer
and ListingCount.

The next Page Type we’ll create is News page. This is based on Page.aspx.
Create a new Page Type based on News.aspx by copying Template Page:

Show calendar information from This page

Table 4-11: Important property settings for Calendar Web Page.

Property Caption Value
75

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install
Name: News page
Description: Single news item (page).
File Name: /Mimic/templates/Page.aspx
Available in Edit mode: Yes
Sort index: 100 (leave as is)

Again we only need a few of the Properties; remove all but MainBody, MainIntro
and WriterName.

One last Page Type to go. This Page Type we’ll be used for the Search func-
tion, so we can have the QuickSearch bar back on the start page. The Search Page
Type will be based on the Page Template Search.aspx.

Create a new Page Type based on News.aspx by copying Template Page:

Name: Search
Description: Main search page.
File Name: /Mimic/templates/Search.aspx
Available in Edit mode: Yes
Sort index: 100 (leave as is)

This time leave only two Properties: MainBody and MainContainer. But, we
should also add a few more. Add these Properties to Search.

MainCatalog
Heading: Catalog for Index Server.
Help text: Specify the Index Server catalog to search.
Data Type: String

MainContainer
Heading: Start page for the search.
Help text: If this field is left empty, the search will start from the start page.
Data Type: Page

MainScope
Heading: Scope for Index Server search.
Help text: Specify the folder in which the search will take place.
Data Type: String

That means we’re done. Now we have all the Page Types we need to make
Mimic look and behave a lot like Example. The Mimic Web site now comprises
the following Page Types:
Table 4-12: Page Types for the Mimic Web site.

Page Type Name Description

Calendar Mother page for calendar events.

Calendar event Single calendar event.
76

4. Mimicking the Example Web Site
It’s time to create more Web Pages.

Create the Same Web Pages That Exist in the Example Web Site

There are already some Web Pages in the Mimic Web site. We are now going to
create the remaining to make the Mimic Web site almost perfectly mimic the Ex-
ample Web site.

Putting the QuickSearch Bar Back on the Start Page

Enter Mimic’s Edit mode and right-click on the Web Page Inspiration in the left
pane. Select ‘Create new’ and then click on ‘Create’ in the right pane to create a
Web Page from the Search Page Type. Name the new Web Page ‘Search’. Let the
Property ‘Start page for the search’ point to the Start page and then click on ‘Save
and publish’. The QuickSearch bar will be displayed on the Start page as soon as
the Dynamic Property ‘Global search page’ has been set to point to the new
Search page.

To set the Dynamic Property, first select the Start page and then click on the
Dynamic Properties tool button . Set ‘Global search page’ to point to the new
Search Page. Click Save and make sure that the QuickSearch bar is now back on
the Start page.

Spreading The News

Mimic’s news list is currently flawed, as it is using the Web Page Tree for news
items. This won’t do. The remedy is to create a proper news list from Page Type
News list and then produce a couple of news items for it to display.

Create a new Web Page of type News list and place it under Inspiration (select
Inspiration, right-click and select ‘Create new’, click on Create in the right pane
for Page Type News list.). Set the Properties to these values:

Fetch listing from
Setting: Click the ellipsis button, then click on ‘Link to same page’ which lists
as ‘This page’.

News list Mother page for news items (pages).

News page Single news item (page).

Ordinary web page Multi-purpose Page Type using DefaultFramework,

Start page Start page for Web site.

Template Page Page Type to hold most commonly used Properties (not
available in Edit mode).

Table 4-12: Page Types for the Mimic Web site.

Page Type Name Description
77

Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install
Display number of pages in the list
Setting: 3

Let’s spread some news. Select News in the left pane and create a couple of news
items from Page Type News page. Remember: they will be displayed in reverse
creation order. Here is some example information for you to use:

Name: Mimic Up And Coming
Introduction: Web site Mimic is a strong contender says Reuters.
Editor: Today Reuters news agency report that Mimic...

Name: To Be Reckoned with
Introduction: Creators of Web sites should pay close attention to Mimic.
Editor: Web site Mimic has been an underdog for too long...

Name: Mimic Almost as Good as Any Example
Introduction: The Mimic Web site has been found to equal any example Web
site in appearance.
Editor: So there!

Now click on Start page, activate the Edit tab in the right pane and let the Prop-
erty ‘News list’ point to the Web Page News. After saving and publishing, the
Start Page has a clickable news list.

Set up a Few Dates

The penultimate thing we’ll add to the Mimic Web site is a few appointments, cal-
endar events. There is already a container for calendar events; it only needs some
actual events.

Create a couple of calendar events and place them all under Calendar in the
Web Page Tree. As for dates, make sure that at least one of them is for the current
month, since the Web User Control Calendar.aspx only displays events for the
current month.

Name: Mimic Editor Training
Start date: 1 July 2004 8 AM
Stop date: 2 July 2004 4 PM (16.00)
Introduction: Inaugural Mimic Editor Training Course
Editor: This is the first Mimic Editor training course ever presented.

Name: Mimic Admin Training
Start date: 1 June 2004 8 AM
Stop date: 4 June 2004 4 PM (16.00)
Introduction: Inaugural Mimic Admin Training Course
Editor: This is the first Mimic Admin training course ever presented.

Name: Mimic Developer Training
Start date: 3 May 2004 8 AM
78

4. Mimicking the Example Web Site
Stop date: 5 May 2004 4 PM (16.00)
Introduction: Inaugural Mimic Developer Training Course
Editor: This is the first Mimic Developer training course ever presented.

Cleaning up the Start Page

The last thing to do is to clean up the Start page. It lacks an image, a heading and
some text. Click on Start page in the left pane and then select the Edit tab in the
right pane. Enter settings for the Properties of your own choice or use these:

Main image on start page: /Mimic/images/startpage_image.jpg
Main body heading:
Editor: Mimic is here to stay!

Final Result

Comparing the present Web site with figure 4-5, it is apparent that Mimic has
come a long way.

Figure 4-8: Final appearance of the Mimic Web site.

Using a lot of built-in and supplied EPiServer functionality for the Mimic Web
site, all of the following now work:
79

A Closer Look at Frameworks and Page Templates in the Example Web Site
Homing device (the ability to ‘go home’ when you click on the EPiServer 4
logo in the upper left corner)

Top menu

News list with news items

Calendar list with calendar items

Printing

Logging on

Searching the Web site

Of course, the vital Admin and Edit modes have been working all along.
Hopefully this first example has been successful in demonstrating EPiServer’s

capabilities and familiarising you with Admin and Edit modes. There’s one thing
more we can look at: how to clean up after ourselves.

Removing Superfluous Web Page Versions

Every time a Web Page is saved, the old settings are stored away safely letting Ed-
itors handle as many versions of individual Web Pages as they like. During the
course of creating the Mimic Web site, we have created several versions of some
Web Pages, in particular the Start Page. We’ll remove all but the last version now.

In Edit mode, select the Start page in the Web Page Tree, left pane, and then
select the Version list tab in the right pane. Delete all but the current version, the
last, of the Start page. (Simply click the Delete button on the first line as many
times as there are extraneous versions.)

A Closer Look at Frameworks and Page Templates in the Example Web Site

Anatomy of an EPiServer Framework Definition File

Web User Controls and EPiServer Base Classes in DefaultFramework

We have discussed them already, but let’s take another look at the Web User Con-
trols and Base Classes in the DefaultFramework.

Thirteen of the Web User Controls found in templates\Units are registered
for use in the Framework Definition File DefaultFramework.ascx.

Example 4-1: User Controls registered for use in DefaultFramework.ascx.

<%@ Register TagPrefix="development" TagName="WriterInfo" Src="~/templates/Units/

WriterInfo.ascx"%>

<%@ Register TagPrefix="development" TagName="SiteFooter" Src="~/templates/Units/

SiteFooter.ascx"%>

<%@ Register TagPrefix="development" TagName="RightListing" Src="~/templates/Units/

RightListing.ascx"%>
80

4. Mimicking the Example Web Site
<%@ Register TagPrefix="development" TagName="QuickBar" Src="~/templates/Units/

QuickBar.ascx"%>

<%@ Register TagPrefix="development" TagName="Quicksearch" Src="~/templates/Units/

QuickSearch.ascx"%>

<%@ Register TagPrefix="development" TagName="Print" Src="~/templates/Units/

PrintFunctions.ascx"%>

<%@ Register TagPrefix="development" TagName="PageHeader" Src="~/templates/Units/

PageHeader.ascx"%>

<%@ Register TagPrefix="development" TagName="PageBody" Src="~/templates/Units/

PageBody.ascx"%>

<%@ Register TagPrefix="development" TagName="LeftMenu" Src="~/templates/Units/Menu.ascx"%>

<%@ Register TagPrefix="development" TagName="TopMenu" Src="~/templates/Units/

TopMenu.ascx"%>

<%@ Register TagPrefix="development" TagName="LoginStatus" Src="~/templates/Units/

LoginStatus.ascx"%>

<%@ Register TagPrefix="development" TagName="Listing" Src="~/templates/Units/Listing.ascx"%>

<%@ Register TagPrefix="development" TagName="Header" Src="~/templates/Units/Header.ascx"%>

In order to use classes found in the name space EPiServer.WebControls, this is
also registered in DefaultFramework.ascx.

Example 4-2: Name space EPiServer.WebControls registered for use in DefaultFramework.ascx.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

The HTML Tables in DefaultFramework

The HTML body in DefaultFramework comprises just one form, that’s all. In this
form we find one table, but with nested tables inside it. The tabular skeleton looks
like this:

Example 4-3: HTML table skeleton in DefaultFramework.

<table width="760" border="0" cellspacing="0" cellpadding="0" align="center">

<tr>

<td colspan="2" align="center">

<table width="100%" border="1" cellspacing="0" cellpadding="0" background="<%=

HeaderImage %>" style="background-repeat:no-repeat">

<tr>

<td>

<table width="100%" border="1" cellspacing="0" cellpadding="0" height="96">

<tr>

<td width="79%" valign="top">

<a href='<%=EPiServer.Global.EPConfig.RootDir%>'><EPiServer:Clear

width="300" height="70" runat="server" />

</td>

<td width="21%" align="center">
81

A Closer Look at Frameworks and Page Templates in the Example Web Site
<EPiServer:Clear height="18" runat="server" />

<development:quicksearch ID="QuickSearch" runat="server" />

</td>

</tr>

<tr>

<td colspan="3" height="23">

<development:TopMenu runat="server" id="TopMenu" />

</td>

</tr>

</table>

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td colspan="2"><EPiServer:Clear height="10" runat="server" /></td>

</tr>

<tr>

…

</tr>

</table>

Perhaps we need to dissect the table layout a bit. The first table has only three
rows in it. All three rows have a single column, but, as a preparation for other files
using this Framework Definition File, this single column is set to span two col-
umns (colspan="2").

In turn, the first line of the first table has two nested tables inside it.

Figure 4-9: The nested tables in the first row of the outer table.

Row two doesn’t have much in it, so most of the action is found in the last row,
row number three. This row is home to no fewer than four nested tables.
82

4. Mimicking the Example Web Site
Looking at only the nested tables in the third row of the outer table we notice
that the outermost of those tables has two rows, the last of which is simply used
as a footer (EPiServer:SiteFooter).

Figure 4-10: The nested tables in row two of the outer table (region names included).

That’s it for the layout by HTML tables in the Framework Definition Files, now
let’s turn our attention to Regions as used by EPiServer.

EPiServer Regions

Regions are visual rectangles defined in Framework Definition Files and used in
Page Template Files. The purpose of Regions is two-fold: to allow the creator of
Framework Definition Files to supply default visual HTML elements and User
Controls and to allow the maker of Page Template Files to benefit from these de-
fault elements or replace them with others at she pleases.
83

A Closer Look at Frameworks and Page Templates in the Example Web Site
No fewer than six regions are defined in DefaultFramework.ascx. No regions
are defined to cover any of the two first rows in the first table so these are immu-
table.

Figure 4-11: The six regions defined in Default Framework.ascx.

In the figure, all six regions are depicted. One region, fullRegion, encompasses all
the others so an easy way to replace all default content in DefaultFramework.ascx
would be to only define content for fullRegion in a Page Template File. Besides
fullRegion, mainAndRightRegion is also nested. There are three regions inside it.
So there you have it: using DefaultFramework.ascx gives a Page Template File a
form and an HTML table, the first two rows of which are static and the third row
may be altered at will using any or all six regions.

Inside an EPiServer Page Template File

One of several users of DefaultFramework.ascx is default.aspx, the start page for
the example Web site.

Example 4-4: Part of default.aspx, the start page for the example Web site.

…

<EPiServer:Content ID="NewsListing" Region="menuRegion" runat="server">

…

</EPiServer:Content>

<EPiServer:Content Region="mainRegion" runat="server">

…

</EPiServer:Content>

<EPiServer:Content ID="Events" Region="rightListingRegion" runat="server">

…

</EPiServer:Content>

Row 2 of Outer Table

fullRegion

mainAndRightRegion

Row 1 of Outer Table

menuRegion mainRegion
rightColumnRegion

addRegion
84

4. Mimicking the Example Web Site
As you can see, default.aspx uses three of the six regions in DefaultFrame-
work.ascx: menuRegion, mainRegion and rightColumnRegion.

Figure 4-12: Regions in DefaultFramework.ascx used by default.aspx.

Figure 4-12 shows the regions in DefaultFramework.ascx which are used by the
Page Template File Default.aspx.

Framework Definition Files

The Example Web site uses four Framework Definition Files: AdvancedPortal-
Framework.ascx, DefaultFramework.ascx, PortalUnitFramework.ascx and Sim-
plePortalFramework.ascx. Saving portals for later we’ll focus on DefaultFrame-
work.ascx.

Page Template Files

Of the Page Template Files listed in table 4-1, only Exchange.aspx, ExternalWeb-
Page.aspx and NewsGroup.aspx do not use a Framework Definition File at all.
All the others use DefaultFramework.ascx and some also use one or more portal
frameworks.

Looking into the Start Page, Default.aspx and DefaultFramework.ascx

The visual layout of the Start page and the functions on it are the responsibility
of Default.aspx and its Framework Definition File, DefaultFramework.ascx. So,
here we go (again).

Looking into the Immutable Part of DefaultFramework.ascx

To understand how Default.aspx and DefaultFramework.ascx cooperate to form
the Example Web site’s first page, and how other Page Templates use Default-
Framework.ascx we need to look at pertinent parts of DefaultFramework.ascx.
As stated in the last chapter, the visual layout of DefaultFramework.ascx is real-

Row 2 of Outer Table

fullRegion

mainAndRightRegion

Row 1 of Outer Table

menuRegion mainRegion
rightColumnRegion

addRegion
85

A Closer Look at Frameworks and Page Templates in the Example Web Site
ised by HTML Table elements, but using tables is simply a matter of choice, Div
elements will work just as well.

Example 4-5: First row of outer table in DefaultFramework.ascx contains two nested tables.

<td colspan="2" align="center">

<table width="100%" border="0" cellspacing="0" cellpadding="0"

background="<%=HeaderImage%>" style="background-repeat:no-repeat">

<tr>

<td>

<table width="100%" border="0" cellspacing="0" cellpadding="0" height="96">

<tr>

<td width="79%" valign="top">

<a href='<%=EPiServer.Global.EPConfig.RootDir%>'>

<EPiServer:Clear width="300" height="70" runat="server" />

</td>

<td width="21%" align="center">

<EPiServer:Clear height="18" runat="server" />

<development:QuickSearch ID="QuickSearch" runat="server" />

</td>

</tr>

<tr>

<td colspan="3" height="23">

<development:TopMenu runat="server" id="TopMenu" />

</td>

</tr>

</table>

</td>

</tr>

</table>

</td>

The listing in example 4-5 shows the first row of the outer table in DefaultFrame-
work.ascx. (See figure 4-9 on page 82.)

The most interesting elements have been marked with bold face.
Remember, every Page Template using DefaultFramework.ascx will have the

same functions and appearance in the first two rows of the three-row outer table.
The only thing that can change is the background image used. There is a Dynamic
Property with the name HeaderImage used for this very purpose.
86

4. Mimicking the Example Web Site
Setting the Table Background ‘background="<%=HeaderImage%>"’

The HTML code ‘<table … background="<%=HeaderImage%>" … >’ sets
the background of the first table in the first row of the outer table in Default-
Framework.ascx to this image, which is found in /Example/images/Header.gif:

Figure 4-13: Picture used for background in the first table in the first row of the outer table in
DefaultFramework.ascx.

The picture in figure 4-13 is readily recognised from the Example Web site. It is
present on all pages that use DefaultFramework.ascx for Framework Definition
File. As the first two rows of the outer table in DefaultFramework.ascx never
change, there are no Regions defined.

HeaderImage is a Dynamic Property (see table 4-5), but if you were to look at
its value for the Start Page, ‘Welcome to EPiServer’, you’d notice that it hasn’t
been set. There must be some default mechanism at play since its easy to see that
the file Header.gif is displayed when the start page is loaded. And indeed there is
a default mechanism, this time in the code-behind file DefaultFramework.ascx.cs.
Loading this file into Visual NotePad or Visual Studio .NET, we find the appro-
priately named property function HeaderImage:

Example 4-6: Property function HeaderImage in the code-behind file DefaultFramework.ascx.cs.

protected string HeaderImage {

get {

PageBase page = (PageBase) Page;

if (page.CurrentPage.Property.Exists("HeaderImage")) {

return (string) page.CurrentPage["HeaderImage"];

}

return page.Configuration.RootDir + "images/header.gif";

}

}

The logic of the HeaderImage function is quite obvious: first test for the presence
of a property, static or dynamic, called HeaderImage on the current page, i.e. the
start page Default.aspx. If there is no such property, return a string consisting of
the concatenation of the contents of page.Configuration.RootDir and ‘images/
header.gif’. The value of page.Configuration.RootDir is the installation folder
path for the EPiServer Web site with a slash appended, such as ‘/Example/’.

Anchor ‘<a href='<%=EPiServer.Global.EPConfig.RootDir%>'>’ with an Image

Again we’re dealing with the installation root folder path for the Example Web
site, only this time we use the EPiServer.Global class and its static (Shared in Vis-
87

A Closer Look at Frameworks and Page Templates in the Example Web Site
ual Basic .NET) method EPConfig. EPConfig returns an instance of the class
ApplicationConfiguration which among its method has RootDir. The explana-
tion for RootDir is ‘Root folder [directory] for the site’, which would be ‘/Exam-
ple/’ for the Example Web site (it’s a virtual folder).

The visual part of the HTML anchor is: ‘<EPiServer:Clear width="300"
height="70" runat="server" />’. Clear is an EPiServer class that creates a trans-
parent GIF picture with the given dimensions, defaulting to 1 if either height or
width is missing. The HTML code resulting from the code above contains an im-
age, img, tag and looks like this:

Example 4-7: Actual HTML code resulting from DefaultFramework.ascx.

<img src="/Example/util/images/clear.gif" alt="" width="300" height="70"

border="0" />

In fact, the file Clear.gif contains a 1x1 transparent GIF picture.
The end result is a transparent area covering the text ‘EPiSERVER4’ in the

upper left corner on the pages acting as a ‘homing device’.

Using QuickSearch ‘<development:QuickSearch ID="QuickSearch" runat="server" />’

All you have to do to equip your Web site with search capabilities is to include
the User Control QuickSearch.ascx and give it a Web page to use.

In order to use the User Control QuickSearch.ascx, it must first be registered.
This is done by including the line ‘<%@ Register TagPrefix="development"
TagName="Quicksearch" Src="~/templates/Units/QuickSearch.ascx"%>’ at
the top of DefaultFramework.ascx. The effect of including the line ‘<develop-
ment:QuickSearch ID="QuickSearch" runat="server"/>’ in the HTML code is
this:

Example 4-8: Resulting HTML code when using QuickSearch.ascx.

<table border="0" cellpadding="0" cellspacing="0">

<tr>

<td>

<input name="defaultframework:QuickSearch:SearchText" type="text"

id="defaultframework_QuickSearch_SearchText" style="width:120px;" />

</td>

<td style="padding-left: 4px;padding-top: 2px">

<a id="defaultframework_QuickSearch_QuickSearchButton"

href="javascript:__doPostBack(

'defaultframework$QuickSearch$QuickSearchButton','')">

<img src="images/ico_find.gif" id="defaultframework_QuickSearch_Img1" border="0"

alt="Quick search" />

</td>

</tr>
88

4. Mimicking the Example Web Site
</table>

We get what we see: an input box and a tool button. Clicking on the tool button
calls the JavaScript function ‘__doPostBack’ with two arguments.

Web Pages As Menu: <development:TopMenu runat="server" id="TopMenu" />

A very powerful and yet simple construct in EPiServer is that every Web Page in
the Edit mode Page Tree is a potential menu entry. The Page Tree and menu hi-
erarchy has a direct correspondence, a first-level Web Page is a first-level menu,
and so on. The choice of presenting this menu horizontally across or vertically in
the left margin is almost as easy as choosing between the two User Controls Top-
Menu.ascx and Menu.ascx. Only Menu.ascx, often used as menu in the left-most
area, is actually hierarchical, TopMenu.ascx always displays only the first-level
Web Pages as menu items.

In this case, TopMenu.ascx is used in the second row of the inner-most table.
This corresponds to the ‘empty’ row in the background picture in figure 4-13.
This is the resulting HTML code:

Example 4-9: HTML code when using TopMenu.ascx.

<table width="100%" border="0" cellspacing="0" cellpadding="0" XmlNs:EPiServer="http://

schemas.episerver.com/WebControls">

<tr valign="middle" align="center">

<td height="23">

Templates

</td>

…

<td height="23">

Links

</td>

</tr>

</table>

This code is created from the template found in TopMenu.ascx and EPiServer
built-in functions, which have full access to the Edit mode Page Tree. As you
navigate around using the menus, you’ll notice that the ‘active’ menu is always
marked using bold face. This is also built-in functionality.

That concludes our scrutiny of the first row of the outer table. The second
row is processed in a jiffy, it looks like this: ‘<td colspan="2"><EPiServer: Clear
height="10" runat="server" /></td>’. It is no more than a single table cell
spanning two columns containing a transparent GIF picture ten pixels high and
one pixel wide. So, let’s take a look at the third and last row of the outer table, the
one that Page Template can insert its own functions in, since it contains defined
Region.
89

A Closer Look at Frameworks and Page Templates in the Example Web Site
Use of Regions in DefaultFramework.ascx by Default.aspx Page Template

Page Template Default.aspx uses the regions menuRegion, mainRegion and
rightListingRegion from DefaultFramework.ascx; see figure 4-11 on page 84.

News Items Go in the Left-Most Area, Region menuRegion

The menuRegion is used to house a news items list by exchanging a NewsList for
the default contents of menuRegion. NewsList is a class found in EPiServer
.WebControls which is declared near the top of Default.aspx.

Example 4-10: Declaration of EPiServer.WebControls in Default.aspx.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

With this declaration in place, all the developer has to do to use any of the classes
in EPiServer.WebControls is to insert a new tag, such as this for NewsList found
in Default.aspx:

Example 4-11: Declaration of NewsList in Default.aspx.

<EPiServer:Newslist ID=Newslistnew Pagelinkproperty="NewsContainer" runat="Server"

MaxCount="<%# GetNewsCount() %>">

To use the NewsList class you look up its documentation in the EPiServer SDK
Help File, where you’ll find that NewsList uses several pre-defined templates
names, HeaderTemplate, FirstNewsTemplate, NewsTemplate, FooterTemplate,
and more. This enables you to use separate visual elements together with each of
the first four news items, news following the first four, the header and a footer.
If you’d like to handle all news items the same, then specify NewsTemplate.
Here’s the NewsTemplate from Default.aspx:

Example 4-12: NewsList.NewsTemplate specification in Default.aspx.

<Newstemplate>

<tr>

<td class="DateListingText"><%# Container.CurrentPage["PageStartPublish"] %></td>

</tr>

<tr>

<td><a href="<%# Container.CurrentPage.LinkURL %>" class="StartPageHeading">

<%# Container.CurrentPage.PageName %>

<%# Container.CurrentPage["MainIntro"] %></td>

</tr>

<tr>

<td><EPiServer:Clear height="6" runat="server" /></td>

</tr>

</Newstemplate>

This NewsTemplate lives inside a table and every news item results in three news
rows in the table. The first news item row contains the value of the property
90

4. Mimicking the Example Web Site
PageStartPublish for the news item (a single news item is defined on a single Web
Page, there’s one Web Page for every news item). Row number two is an HTML
anchor where the link, href, is a link to the full page on which the news item is
described and the text part is comprised of two lines: the first line being the name
of the Web Page as entered in Edit mode and the second any introduction en-
tered for the news item Web Page. Finally, row number three contains a spacer
to make the news item table aesthetically pleasing.

Region mainRegion Gets a Picture, a Heading and Some Text

Moving to the next Region used by Default.aspx, mainRegion, we find that it is
the destination for the contents of three values: StartPageImage, MainBodyHead-
ing and PageBody.

Example 4-13: Specification for mainRegion in Default.aspx.

<EPiServer:Content Region="mainRegion" runat="server">

<table border="0" cellpadding="0" cellspacing="0"

xmlns:EPiServer="http://schemas.episerver.com/WebControls">

<tr>

<td>

<table border="0" cellpadding="8" cellspacing="1" bgcolor="#DEDEDE">

<tr>

<td bgcolor="#ffffff">

<img src="<%= StartPageImage %>" border="0" />

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td>

<table border="0" cellpadding="0" cellspacing="10">

<tr>

<td background="images/L_triangleBG.gif" height="15">

<EPiServer:Property PropertyName="MainBodyHeading"

DisplayMissingMessage="false" class="ListHeading"

runat="server" />

</td>

</tr>

<tr><td><development:PageBody id=pagebody runat="server" /></td></tr>

<tr><td bgcolor="#dedede"><EPiServer:Clear runat="server" /></td></tr>

</table>

</td>

</tr>
91

A Closer Look at Frameworks and Page Templates in the Example Web Site
</table>

</EPiServer:Content>

The way these values are used is quite interesting, as we’ll see. Somewhere there’s
a connection for all three with Properties defined in EPiServer Admin mode and
given values in EPiServer Edit mode, but the way to get at their values differs.

The first Property, StartPageImage, is not found in the Page Template Start
page. As can be seen in listing 4-14, it is used as a property and we’re dealing with
an property function from the code-behind file, Default.aspx.cs.

Example 4-14: Extract from Default.aspx.cs, the code-behind file.

private readonly string _startPageImage = "images/startpage_image.jpg";

…

protected string StartPageImage {

get {

if (CurrentPage["MainImage"] != null) {

return (string) CurrentPage["MainImage"];

}

return _startPageImage;

}

}

The code for StartPageImage reveals what’s happening here: if the static Property
MainImage has been given a value for Start page this will be used, otherwise the
image path in _startPageImage will be returned.

Next we look at the Property MainBodyHeading, the second found in De-
fault.aspx. It is dealt with in short order. The class EPiServer.WebControls.Prop-
erty is used to simply insert the contents of MainBodyHeading at the current
location in the HTML page.

Third and last is PageBody, which is a User Control (PageBody.ascx).

Example 4-15: Registration of User Control PageBody in Default.aspx.

<%@ Register TagPrefix="development" TagName="PageBody "Src="…/Units/PageBody.ascx"%>

PageBody.ascx is anything but complicated. Its code-behind file has no real con-
tents and its HTML component looks like this:

Example 4-16: The HTML part of User Control PageBody.ascx.

<p><EPiServer:Property id="PageBody" runat="server" PropertyName="MainBody" /></p>

As you can see, the static Property MainBody is used in PageBody.ascx.
92

4. Mimicking the Example Web Site
Summarising the three Properties and the various retrieval methods used
gives us table 4-13:

Page Template Default.aspx uses only these two Regions in DefaultFramework
.ascx.

Table 4-13: Retrieval methods used for three static Properties in Page Template Start.

Property Name Value Retrieval Method

MainImage Property function in code-behind file to make it easy and
clean to use a default image.

MainBodyHeading Simplest possible method used: EPiServer.WebControls.Prop-
erty.

MainBody User Control wraps the Property. Common and very efficient
method to standardise and re-use functionality.
93

A Closer Look at Frameworks and Page Templates in the Example Web Site
94

5
Avoiding Errors, Testing and Debugging

Many human languages have a saying along the lines of the English ‘An ounce of
prevention is worth a pound of cure’. Funnily enough, not many computer lan-
guage constructors have given much thought to this. Some alleviance comes from
computer languages that force developers to clearly state their intentions and de-
clare variables before use and have constructs such as exceptions to help provide
some structure to the eternal quest for structured error handling.

In this regard, C#, in its Visual C# .NET incarnation, is a comprehensive
third-generation computer language that offers a sound development platform
with good constructs and that firstly helps minimise problems and secondly as-
sists in finding them. Its primary development environment, Visual Studio .NET,
has a powerful built-in source code debugger whose use we’ll be exploring to
some extent in this chapter.

Before looking at debugging as such, we’ll provide you with some insights into
both ASP.NET and EPiServer solution development that we have accumulated.

Separate Presentation and Data

The now rather old adage of separating presentation and data also holds true for
ASP.NET and EPiServer solution development. If the litmus test for separation
of presentation and data in the n-tier world is ‘no SQL on the client’, the equiva-
lent in the ASP.NET world would be ‘no Response.Write on the server’. Those
familiar with ASP development recognise Response.Write as the method to write
text, including HTML text, to the client.

Instead, what we propose is the EPiServer Content Framework. It provides
for and encourages separation of presentation and data. We believe you should
start your development effort in designing the Web site visual layout and then add
the functionality needed to achieve that layout. One excellent piece of this puzzle
is ASP.NET templated controls in general and the EPiServer templated controls
in particular.

ASP.NET Templated Controls Has Built-In Separation of Presentation and Data

ASP.NET Templated Controls represent an elegant way to separate presentation
and data, whilst keeping some connection between the two. In short, templated
controls offer HTML template tags with given names, each control class may de-
95

Express Your Intent Clearly in Code, Comment When You Must
fine their own names, which are handled by code in the control’s class. ASP.NET
has its own set of templated controls, e.g. DataList and Repeater.

Most of the classes in EPiServer.WebControls are templated controls. Among
the templated control classes in EPiServer WebControls we find:

Calendar, for displaying calendar events

Newslist, for displaying news items

PageList, for displaying a list of pages

PageTree, for displaying a list of pages as a tree

Express Your Intent Clearly in Code, Comment When You Must

This is not a book on coding style but we have found that most of us find that
the statement ‘the code is the comment’ holds true. The way we interpret the
statement is that the code should be so clear and obvious that the need for com-
ments isn’t very great. Many are the times that we have improved the readability
of our own code simply by taking a group of source code lines and making them
into a function whose name conveys the intent of the code better than the source
code lines themselves.

There are a couple of good ways to know if you need to improve your skills
in this area: ask a colleague to read your source code and relate its purpose to you
and also try reading some of your own source code which you haven’t touched
for a few months.

Testing Equals Module Testing

Make Tests Easy, Easy to Interpret and Self-Documenting

A very nice spin-off effect of separating presentation and data is that it enables
separation of tests for data handling code and tests for presentation code. Here
we’ll concentrate on tests for data handling code.

Have Your Code Write Data to Files, Compare Files between Versions of the Code

In his excellent book Refactoring: Improving the Design of Existing Software, Martin
Fowler suggests an elegant yet powerful testing method: have the code write data
to files and compare new files with historical ones. Mr. Fowler himself uses a text
comparison tool whose output is restricted to ‘OK’ if the contents of two text
files are the same. We would like to add a few suggestions to this method, as we
feel that a direct comparison of file contents is too restrictive and precludes self-
documenting output files. Instead, we suggest that all output be XML formatted
and a tool used which allows you to exclude XML elements, and child elements,
from the comparison.
96

5. Avoiding Errors, Testing and Debugging
We have such a tool, XMLComp.Exe, freely available at our Web site, www
.episerver.com. In honour of Martin Fowler, the tool outputs ‘OK!’ and ‘!OK’,
respectively (interpretation obvious).

When Bugs Are Reported Start by Expanding the Test Suite

It’s very important that you keep your test suites, such as they are, in sync with
the solutions you develop. An important part of this is to treat every bug report
in the same way and always start by expanding the existing test suite so it will also
capture the reported bug. Only when the test suite itself is debugged and the new-
ly reported bug incorporated into it is it time to correct the erring code.

Common Problems in ASP.NET Development

The fact that EPiServer itself and the solutions you develop for it are ASP.NET
applications gives common ground as regards avoiding and handling errors. The
most common problem for EPiServer developers has nothing to do with either
ASP.NET or EPiServer: it concerns file and folder access permissions. Most ap-
plication developers shy away from access permissions and do not wish to have
any dealings with them whatsoever.

Nevertheless, access permissions are almost always a fact of life for the appli-
cations that are developed. For ASP.NET applications, many access permissions
problems can be traced back to incorrect, excessively restrictive access permis-
sions for the ASPNET account, the user account used by ASP.NET.

As a part of an effort to track down a problem, there a few things you can do
regarding the ASPNET account:

Make the ASPNET account member of the local Administrators group
account

Change access permissions for the \INetPub folder tree to include Change,
or even Full Control, for ASPNET

It is important that you find the problem and then restore the group member-
ships and access permissions – you don’t want to deploy your solution with too
broad a privilege set for the ASPNET account.

Useful Tools

No doubt you have your own set of useful tools. We just want to make sure that
you are aware of some excellent tools from the same source: the SysInternals
Web site hosted by Mark Russinovich and Bryce Cogswell. Mark Russinovich has
earned a reputation for knowing just about everything about the Windows family
of operating systems. He has co-authored ‘Inside Windows 2000’ together with
Dave Solomon.

There are three tools at SysInternals that you might want to take a look at:
97

Common Problems in ASP.NET Development
DebugView, shows output from DbgPrint and OutputDebugString

FileMon, shows file access activity

RegMon, show Registry access activity

All three tools function like a ‘tape’ recorder recording debug output, file and
folder access and Registry key and value access, respectively. You have the option
to start and stop the recording, filter the output and even save it for further study.

DebugView

DebugView shows debug output in a window, in the words of Mark and Bryce
themselves: ‘This program intercepts calls made to DbgPrint by device drivers
and OutputDebugString made by Win32 programs. It allows for viewing and re-
cording of debug session output on your local machine or across the Internet
without an active debugger.’

Calls to System.Diagnostics.Debug.WriteLine are displayed by DebugView, as
they end up as calls to OutputDebugString.

We do not recommend that you leave Debug output calls in your code when
you’ve reached the production phase, as there is a small performance penalty, but
in the testing and pre-production phase you will probably find DebugView quite
useful.

Figure 5-1: DebugView at work.

FileMon

File Monitor, FileMon, records and lets you analyse file and folder access. This
introduction to FileMon is taken from the SysInternals Web site:
98

5. Avoiding Errors, Testing and Debugging
‘FileMon monitors and displays file system activity on a system in real-time.
Its advanced capabilities make it a powerful tool for exploring the way Windows
works, seeing how applications use the files and DLLs, or tracking down prob-
lems in system or application file configurations. FileMon’s timestamping feature
will show you precisely when every open, read, write or delete occurs, and its sta-
tus column tells you the outcome. FileMon is so easy to use that you’ll be an ex-
pert within minutes. It begins monitoring when you start it, and its output
window can be saved to a file for off-line viewing. It has full search capability, and
if you find that you’re getting information overload, simply set up one or more
filters’.

Figure 5-2: FileMon.Exe at work.

The session recorded by FileMon when capturing the picture in figure 5-2 was of
course an EPiServer solution. As the file paths show this was recorded during a
session with the example Web site. The requests labelled Query Security reveal a
pattern which you’ll encounter a lot when using FileMon and RegMon. This pat-
tern consists of calling some Win32 functions twice; the first call is just made to
determine how much data we can expect back, it will always be expected to fail;
then a big enough buffer is allocated and lastly the second call is made. You might
wonder why Query Security requests are made in the first place? Well, apparently
all the file access calls are made by INetInfo.Exe using its own logon account, of-
ten the System (a.k.a. ‘LocalSystem’) account. The Query Security requests are
made to establish whether the actual Web viewer has access to this particular
page. If she doesn’t have access, the Web Server may return HTTP error 403
(Forbidden: Access is denied) or a similar diagnostic code and a corresponding
Web page.
99

Common Problems in ASP.NET Development
RegMon

Being the most ‘secret’ and enigmatic part of Windows, any tool that helps un-
ravel the mysteries of the Registry is precious. This certainly applies to RegMon,
not only for its comprehensive feature set but also for the fact that the source
code used to be published on the SysInternals Web site. Unfortunately, some of
the source code for the SysInternals tools found the way into malware, which has
led Mark and Bryce to stop publishing the source code for most tools.

RegMon works like a Registry access recorder. It records information about
every access to the Registry including time, process name, process ID, type of re-
quest, Registry path accessed, result and ‘other’ data. When you’re sure that Reg-
Mon has recorded the pertinent information, you stop the recording and start
analysing.

You use RegMon to find out which Registry keys your EPiServer solution ac-
cesses and whether that access was successful. For each unsuccessful access, you
use RegEdit to inspect, and perhaps change, the access permissions for the Reg-
istry key. In the words of its creators:

‘Regmon is a Registry monitoring utility that will show you which applications
are accessing your Registry, which keys they are accessing, and the Registry data
that they are reading and writing – all in real-time. This advanced utility takes you
one step beyond what static Registry tools can do, to let you see and understand
exactly how programs use the Registry. With static tools you might be able to see
which Registry values and keys have changed. With Regmon you’ll see how the
values and keys changed.’

Figure 5-3: RegMon.Exe at work.
100

5. Avoiding Errors, Testing and Debugging
Figure 5-3 shows a screen dump from a RegMon session. This particular session
was recorded during the start of an EPiServer application. The extract shown in
the picture reveals that the process AspNet_WP.Exe performs some Registry ac-
cesses. This is to be expected for any ASP.NET application running on Windows
2000 and Windows XP. On Windows Server 2003, the ASP.NET worker process
is instead called W3WP.Exe. AspNet_WP.Exe and W3WP.Exe are the ASP
.NET worker processes for their respective Internet Information Services, IIS,
versions.

The Importance of Knowledge and Experience

The importance of choosing the right tools, methods and algorithms for software
development cannot be over-emphasized. Whether this ability comes from for-
mal studies or extensive experience is not really relevant as long as you keep
abreast of new insights and knowledge. For example, a relatively easy coding
technique as recursion can save both time and effort and help you produce suc-
cinct and readable code, yet there are developers who do not feel comfortable us-
ing recursion.

As for Microsoft .NET, ASP.NET and C# .NET, there seem to be more
books published than there are days in a year, so a lack of material is not a prob-
lem for ASP.NET developers. We’ll provide a short list of books that have been
important to us at the end of this one (see page 323).

Microsoft .NET Framework and Visual C# .NET

Boxing Is Very Popular

Everything in Microsoft .NET Framework is an object, or can be treated as an
object. This means we can write code that looks downright strange, such as the
one in example 5-1.

Example 5-1: Effects of treating a simple variable as an object in Microsoft .NET.

Console.WriteLine(1.ToString()); // Ouputs ‘1’ to the console.

Console.WriteLine((1 + 1).ToString()); // Ouputs ‘2’ to the console.

Console.WriteLine("Hello world".ToString()); // Outputs ‘Hello world’ to the console.

The reason that we can use the ToString method in the sample above is that this
method is declared for System.Object and System.Object is the mother (root)
class for every other class in Microsoft .NET Framework. Even simple data types
such as integers and booleans are classes in Microsoft .NET Framework and thus
inherit from System.Object. Calling the method ToString for what is obviously a
string constant, "Hello world", is indeed overkill, but nonetheless perfectly legal
in Microsoft .NET Framework.
101

Microsoft .NET Framework and Visual C# .NET
For performance reasons, variables of simple data types aren’t actually instan-
tiated objects until they are treated as such. In this example:

Example 5-2: Variables of simple data types behave as objects when treated as such.

int IntVar1 = 1;

int IntVar2 = 2;

int IntVar3 = IntVar1 + IntVar2;

Console.WriteLine(IntVar3.ToString());

All three variables are simple data types, allocated on the stack, until the last line
of code, where IntVar3 is treated as an object and space for its mirror object is
allocated on the heap. This way of handling variables of simple data types like ob-
jects is called ‘boxing’ in the Microsoft .NET Framework context. Be aware that
boxing is time consuming and you might need to keep an eye on it.

Use StringBuilder Instead of String, But Not Always

Microsoft has equipped Microsoft .NET Framework with quite an array of capa-
ble string handling classes – they’re almost as easy to use as in BASIC or even
Simula.

There’s one big caveat though which has to do with boxing in Microsoft
.NET Framework. It’s extremely time-consuming to concatenate two String ob-
jects! When there’s a need to ‘fiddle around’ with the content of string objects,
StringBuilder objects should always be used instead. Of course, if the fiddling
around happens on very few occasions during the execution of the code, there
will be no noticable performance gain. Let’s look at some code samples.

Example 5-3: String handling using String objects.

string StringAppendedTo= string.Empty;

for (int Revs = 0; Revs < 100000; Revs++) {

StringAppendedTo += "a";

}

(Data type ‘string’ in Visual C# .NET and ‘String’ in Visual Basic .NET are the
same as System.String.)

Running the code in example 5-3 takes 95 seconds, i.e. 0.95 milliseconds per
lap. Using StringBuilder we see quite different results:

Example 5-4: String handling using StringBuilder objects.

System.Text.StringBuilder StringBldrAppendedTo= new System.Text.StringBuilder();

for (int Revs = 0; Revs < 100000000; Revs++) {

StringBldrAppendedTo.Append("a");

}

102

5. Avoiding Errors, Testing and Debugging
The duration for the code in example 5-4 is 19 seconds, but this code executes
1000 times more laps than the previous code sample! Each lap in the StringBuild-
er example uses 0.19 microseconds.

So, in this comparison we find that StringBuilder is about 5000 times faster
than String in append operations!

It Is Faster to Use Implicit Concatenation than More Calls to Append

If you’re really looking for ways to save time with StringBuilder objects, there’s
an interesting fact to consider. It so happens that if you do an implicit concate-
nation in the call to StringBuilder.Append, is is faster than using two calls to Ap-
pend. Look at the code samples below.

Example 5-5: Implicit concatenation in the call to StringBuilder.Append.

StringBldrAppendedTo.Append("a" + "a");

Example 5-6: Two calls to StringBuilder.Append.

StringBldrAppendedTo.Append("a");

StringBldrAppendedTo.Append("a");

The code in example 5-5 is about 20% slower than a call to Append without con-
catenation, but much faster than using two calls such as in example 5-6. Naturally,
the code in example 5-6 takes about twice the amount of time compared to a sin-
gle call to Append.

Debugging Is a Three-Pronged Choice

Debugging ASP.NET applications offer a little bit more than debugging Win-
dows Forms applications in that you can add trace output to your ASP.NET Web
Forms. When it comes to debugging C# code, you have a choice of either adding
print-out of debug messages and assertions to your code or simply using the built-
in debugger in Visual Studio .NET. In many cases, your preferred route is likely
to result in a combination of the two.

Tracing in HTML

By adding the Trace directive to an EPiServer Page Template File and setting its
contents to true, you enable tracing information to be output at the end of the
rendered page.

There are seven categories of information output when using the Trace direc-
tive:

Request Details

Trace Information

Control Tree
103

Debugging Is a Three-Pronged Choice
Cookies Collection

Headers Collection

Querystring Collection

Server Variables

Example 5-7: Trace directive added to ASP.NET Web Form, i.e. EPiServer Page Template.

<%@ Page language="c#" Codebehind="Page.aspx.cs" AutoEventWireup="false"

Inherits="development.Templates.StandardPage" Trace = "true" %>

Setting the attribute Trace to true for a single page results in trace information
being displayed at the bottom of the HTML page every time it is ‘called’, but only
for this page.

Figure 5-4: Effect of setting page attribute Trace to true.

Among the oceans of information displayed, you will find such information as
how the current page was called upon, date and time of call, session ID and a lot
more.
104

5. Avoiding Errors, Testing and Debugging
Switching on Tracing for the Whole Application

At first when you need tracing, you might want to switch it on for the whole ap-
plication and not for just a few EPiServer Page Templates. This is done by ena-
bling trace in the application’s web.config file.

Example 5-8: Trace directive added to web.config enables tracing for the whole application.

<!-- APPLICATION-LEVEL TRACE LOGGING

Application-level tracing enables trace log output for every page within an application.

Set trace enabled="true" to enable application trace logging. If pageOutput="true", the

trace information will be displayed at the bottom of each page. Otherwise, you can view the

application trace log by browsing the "trace.axd" page from your web application

root. -->

<trace enabled="true" requestLimit="10" pageOutput="false" traceMode="SortByTime"

localOnly="true" />

Example 5-8 is taken from an EPiServer application web.config file, only the ‘en-
abled’ attribute value has been changed.

Keeping the value for attribute ‘localOnly’ at ‘true’ means that only Web
browsers started on the same computer that the Web server is executing will we
able to use trace.axd to view the tracing output. Letting ‘pageOutput’ keep its set-
ting of ‘false’ means that no tracing information is displayed in the Web browser
window; it can only be viewed with trace.axd.

Figure 5-5: Viewing trace information for application Mimic.

Trace.axd is a series of normal HTML files placed in sub-folders to the Tempo-
rary Internet Files folder.

Adding Debug Code to Your Code

There is one big advantage and one great drawback to adding debug code to your
code. The advantage is that you control every aspect of debugging yourself and
105

Debugging Is a Three-Pronged Choice
the disadvantage is that you have to add more code, which itself is prone to er-
rors.

All of C#’s debug functions are part of the System.Diagnostics name space
meaning that they aren’t particular to C# but available in all .NET Framework
compatible languages.

System.Diagnostics.Debug

There are primarily five methods that are of interest in the System.Diagnos-
tics.Debug class:

Assert

Write and WriteLine

WriteIf and WriteLineIf

All the properties and methods in this class are shared (Static in Visual Basic
.NET), so you never need to instantiate an object to use them.

The Assert function should be an old friend of C developers. It’s quite easy to
understand and use. It has three overloaded versions, two of which are seen here:

public static void Assert(bool): if the boolean expression bool is false, the Call
Stack is printed to the Output window

public static void Assert(bool, string): if the boolean expression bool is false,
the contents of string is printed to the Output window

Now, some would argue that the need for calls to Assert in your code is not as
pronounced in C# and Visual Basic .NET compared to C, as all languages that
produce managed code have access to the excellent exception handling. You will
probably find that both exception handling and calls to Assert have a place in
your code.

System.Diagnostics.Debug.Assert

Example 5-9: Use of Assert method to test the IsNull property of variable prop.

System.Diagnostics.Debug.Assert(! prop.IsNull, "Prop is null");

Adding the code from example 5-9 would probably be done in code that handles
some aspect of EPiServer Property objects, as IsNull is a standard attribute for
the PropertyData (EPiServer.Core.PropertyData) class. When the code in exam-
ple 5-9 is executed, the message ‘Prop is null’ will be displayed depending on the
outcome of the test ‘! prop.IsNull’. If it evaluates to true, no message is displayed;
otherwise the message is output.
106

5. Avoiding Errors, Testing and Debugging
System.Diagnostics.Debug.Write and WriteLine; WriteIf and WriteLineIf

The two methods System.Diagnostics.Debug.Write and WriteLine both output
text to the Output window in Visual Studio .NET, the only difference being that
method WriteLine appends System.Environment.NewLine to the output which
Write doesn’t. There’s also a variant of both of these: WriteIf and WriteLineIf,
which both work a lot like the Assert method.

Example 5-10: Using System.Diagnostics.Debug.Write and WriteLine in code.

System.Diagnostics.Debug.Write("Value: ");

if (! prop.IsNull) {

System.Diagnostics.Debug.WriteLine(prop.Value.ToString());

} else {

System.Diagnostics.Debug.WriteLine("null");

}

The code in example 5-10 is rather typical of Debug code and also points to the
problem of adding extra code to your source code: this code also has to be bug-
free and some of it will be active even when we change configuration settings to
Release. The only way to ‘fix’ the latter problem is to add more code and surround
the code with ‘#if (DEBUG)’ and ‘#endif’.

Debug Output Can Be Effortlessly Passed to a File

The output of both Assert, WriteLine and WriteLineIf is directed to the Output
window of Visual Studio .NET. This is quite handy, since they won’t clutter your
Web pages nor will there be a series of error popups to handle. It’s very easy to
have debug output saved in a file, should you want to. Functions to accomplish
this are readily available in Visual Studio .NET as all debug output functions write
to a collection of TraceListeners which monitor all debug output. The code sam-
ple below adds a new TextWriterTraceListener to the Debug output listeners.

Example 5-11: Adding a Debug output TraceListener.

using System.Diagnostics;

…

TextWriterTraceListener DbgOut = new TextWriterTraceListener("d:\\MimicDebug.Txt");

Debug.Listeners.Add(DbgOut);

…

Debug.WriteLine(this.CurrentPageLink.ToString());

…

Debug.Assert(! prop.IsNull, "Prop is null");

…

DbgOut.Close();

The code in example 5-11 will result in debug output being written both to the
Output window in Visual Studio .NET and to the file d:\MimicDebug.Txt.
107

Debugging Is a Three-Pronged Choice
Conditional Compilation

C and Visual Basic developers alike have had access to conditional compilation,
albeit not for very many Visual Basic versions. For Visual Studio .NET compat-
ible languages there are additional improvements to conditional compilations
which make it easy to use.

By convention, all Visual Studio .NET languages utilise two conditional com-
pilation constants: Debug and Trace. Using conditional compilation constants is
a little bit different in Visual Basic .NET and C#. For the former, the constants
are Boolean, which determines their use. In the case of C#, it’s true to its C in-
heritance so here we look at whether or not the constant exists and don’t bother
at all with its content (strictly speaking conditional compilation constants in C
and C# do not have any contents).

For C# the default Debug settings are that both Debug and Trace are defined
and in the Release settings only Trace is defined. Another C tradition that C# is
true to is the rather non-sensical one of spelling all constants using only upper
case, so in code be sure to write ‘DEBUG’.

Example 5-12: Using conditional compilation constant Debug.

#if (DEBUG)

System.Diagnostics.Debug.WriteLine("DEBUG is defined!");

#endif

The code in example 5-12 doesn’t represent the most intelligent use of condition-
al compiling, of more interest are the possibilities allowed by the Conditional at-
tribute for functions.

The Conditional Attribute for Functions

For managed code, there’s a very elegant way to utilise conditional compilation.
The function attribute Conditional (System.Diagnostics.Conditional) acts as if a
function declaration, and all calls to it, were surrounded by ‘#if (DEBUG)’ and
‘#endif’.

Example 5-13: Using the function attribute Conditional.

[System.Diagnostics.Conditional("DEBUG")]

private void Verbose_Page_Load(object sender, System.EventArgs e) {

…

}

…

Verbose_Page_Load(sender, e);

…

Verbose_Page_Load(Sender, Evts);

Suppose that your code features the lines from example 5-13. As long as the con-
ditional compilation constant DEBUG is defined, the function Verbose_Page
108

5. Avoiding Errors, Testing and Debugging
_Load is defined and all calls to it executed. Switching to Release settings would
usually un-define DEBUG and thus the declaration of Verbose_Page_Load is re-
moved along all calls to it, of course without doing anything with, or to, your
source code.

The obvious benefit for developers is that we don’t have to litter our code
with ‘#if (DEBUG)’ and ‘#endif’ around every function declaration and each
call to them. Please note the small inconsistency here; for the Conditional at-
tribute you must use double quotes around the name of the constant, something
you should not do inside ‘#if’ statements.

Debugging with Visual Studio .NET

The debugging capabilities of Visual Studio .NET (and later versions) are pretty
much what you’d expect from a modern software construction tool. With the
built-in debugger you can:

Set static Break points in source code

Set dynamic, conditional, Break points in source code

Single-step through code using one of three ways:

Step Into next line of code

Step Over (execute current function call and stop on the next line of
code)

Step Out (execute rest of current function’s code and stop on the first
line after function call)

Move the point of execution

Add Watch expressions

Let the debugger handle Exceptions instead of code or handle Exceptions
that are not handled in code

Access the Call Stack (lets you see which execution route led to the present
state)

Access the Command Window

Debugging ASP.NET applications is somewhat different to debugging Windows
Forms applications, since ASP.NET applications are executed by the process
ASPNET_WP.Exe (W3WP.Exe in Windows Server 2003). When you start de-
bugging an ASP.NET session in Visual Studio .NET, it silently attaches to the
ASPNET_WP.Exe/W3WP.Exe process.
109

Debugging Is a Three-Pronged Choice
Example 5-14: Message from Visual Studio .NET when attaching to ASPNET_WP.Exe for debugging
purposes.

Auto-attach to process '[4052] aspnet_wp.exe' on machine 'BRISINGAMEN' succeeded.

Debugging a Live EPiServer Application

It’s possible to debug an EPiServer application that is already running by attach-
ing to it. Ideally, you would have access to the application’s source code and have
it loaded into Visual Studio .NET, basically prepared for an ordinary debugging
session.

Figure 5-6: Attaching to a running process from the Visual Studio .NET debugger.

To attach to ASPNET_WP.Exe while it’s running, open the Debug menu in Vis-
ual Studio .NET

Break Points

Break points are a line of source code with a special marking so that when exe-
cuting the application in the Visual Studio .NET debugger execution will halt
when it reaches a line of source code with a break point on it.

Figure 5-7: A source code line with a break point set, on the left, and appearance when execution halts at the
line, on the right.
110

5. Avoiding Errors, Testing and Debugging
In figure 5-7, you can see the same source code lines, on the left when a break
point has been set on it and on the right when execution has been first started
and then halted at the break point.

Break points have several advantages, but one of them is very appealing: you
do not have to touch the source code to use them. We all know that source code
should be kept to a minimum since there is a relation between lines of source
code and number of bugs introduced. So, anything that helps us avoiding expand-
ing the source code should be welcome.

Also, Visual Studio .NET remembers break point settings between sessions,
so when you finally have the ideal set of static and dynamic break points at four
in the morning, you can save your work, go to bed, and return later and have the
same settings still being current.

There are two types of break points: static and dynamic break points.

Static Break Points

Using static break points is as easy as clicking on a line of code, starting the ap-
plication and then waiting for the execution to reach the line of code with the
break point and subsequently stop and allow the debugger’s other facilities to be
used, such as single-stepping, QuickWatch and Watch points. With static break
points, execution is halted every time it reaches the source code line with the
break point on it.

To set a break point, either click to the left of the line number (the line number
display setting is located at Tool.Options.Text Editor.C#.General or Basic.Gen-
eral) in the left margin or press F9 (when profile set to ‘Visual Studio Developer’)
with the cursor on the line in question. Since this actually toggles a break point
on and off, do the same again to unset it.

Dynamic, Conditional, Break Points

The other group of break points allows more control than simply breaking into
the debugger every time a particular line of source code is about to be executed.
Dynamic break points only halt execution at a break point if an additional condi-
tion is met. When developing with EPiServer, you typically use an ASP.NET
Web Form to create a few EPiServer Page Types, which in turn are used to create
several, or even a lot of, EPiServer Web Pages. Now, break points are set in
source code, meaning either the code-behind file for the ASP.NET Web Form
or the code-behind file for an ASP.NET User Control, be it a Framework Defi-
nition File or another type of control. How do we know which Web Page was
‘executing’ when the break point was hit? Simple, don’t use static break points but
conditional ones and use the ubiquitous property PageLinkURL to decide when
to actually stop execution. The only problem with this scenario is that Visual Stu-
dio .NET 2003 and earlier do not permit what is called ‘Data Breakpoints’. But
the next best thing is available: Conditional Break Points.
111

Debugging Is a Three-Pronged Choice
To add a condition to a break point, you can create a break point by clicking
on a line of source code and then adding the condition by clicking on the line with
the break point and choosing Breakpoint Properties from the shortcut menu. It
is also possible to first select the line of source code and then create the break
point by choosing Debug.New Breakpoint (Ctrl+B). Create a File location break
point. Next click on Condition and enter a condition of your choice. An excellent
choice if you wish to stop only when the code is executed for a certain Web Page
is ‘CurrentPage.Page.ID’. This is an integer attribute so you could enter a condi-
tion such as this:

Example 5-15: Condition for break point to stop execution when CurrentPage.Link.ID equals 17.

CurrentPage.PageLink.ID == 17

Remember to use C# syntax where ‘==’ means equals and ‘=’ means assignment.
Should the condition you wish to use include non-integer data, you might be able
to convert them to strings and use a condition like this one:

Example 5-16: Condition for break point to stop execution when CurrentPageLink equals “17”.

string.Equals(this.CurrentPageLink.ToString(), "17")

The condition in example 5-16 stops execution for the current break point only
when the property this.CurrentPageLink equals “17”. According the EPiServer 4
Software Development Kit Help File, EPiServer4SDK.chm, CurrentPageLink
has a data type of PageReference but converting it to a string is OK. You might
be able to do more interesting conversions but that hinges on whether or not the
class in question implements the System.IConvertible interface. As this interface
is not compatible with Microsoft’s Common Language Specification, we suggest
you try to make do with ToString.

It’s also possible to use Hit Count with dynamic break points, not the most
useful in EPiServer context, but there when we need it.

Single-Stepping in Code

Single-stepping through source code in Visual Studio .NET is very useful. It lets
you use your own eyes to see every line of code executed and inspect the contents
of every variable along the execution path.

Step Into

Step Into is classic single-stepping; you follow the execution path wherever it
takes you. This means into functions, methods and property functions (for ob-
jects) as they are called, provided their source code is available. If Visual Studio
.NET does not have access to the source code for a function, the call will be ex-
ecuted without stepping; for this particular call Step Into will behave exactly like
Step Over.
112

5. Avoiding Errors, Testing and Debugging
If you chose the profile ‘Visual Studio Developer’ the keyboard shortcut for
Step Into i F11.

Figure 5-8: After selecting Step Into from the break point at line 38, execution is currently inside the function
CollectRegions.

Single-stepping from a break point is shown in figure 5-8. Execution was first
halted at line 38, ‘DataBind();’, and then Step Into was selected a number of times
which resulted in single-stepping into the function CollectRegions, which is
called at line 39 in the source code. Notice that since VS .NET doesn’t have ac-
cess to the source code for the function DataBind we could have selected either
Step Into or Step Over for the first step after execution halted at line 38.

Step Over (Step/Execute Call)

Naming this function ‘Step Over’ cannot have been a natural choice since it
means single-stepping except when the line to be executed is a function call (in
the broad sense) which is executed with no stepping, and the execution is again
halted on the source code line after the function call (strictly speaking it’s not the
first line of source code after the current line, rather it’s the first line of source
113

Debugging Is a Three-Pronged Choice
code that is in turn to be executed). Another choice for its name might have been
‘Step/Execute Call’.

Figure 5-9: Effect of using Step Over twice after execution halted on line 38.

The picture in figure 5-9 was taken after execution was halted at line 38 and the
Step Over was selected twice. The current line, to be executed, is line 41, which
is the closing brace for function Page_Load.

Key F10 would be the keyboard shortcut for Step Over with profile ‘Visual
Studio Developer’ chosen.

Step Out (Finish up Here and Return to Caller)

Step Out is very handy since it means ‘Finish up here and return to caller’. In oth-
er words, if you’ve single-stepped into a function and wish you hadn’t simply
choose Step Out and you’re returned to the source code line after the call to the
function. To envisage this, we can use both figures 5-8 and 5-9. Imagine that
you’ve single-stepped into the function CollectRegions and the current execution
state looks like the one in figure 5-8. Now instead of single-stepping through eve-
ry recursive call to CollectRegions you choose Step Out. This will immediately re-
turn to the caller of CollectRegions and the execution state will look like that in
figure 5-9.

Recursive calls require a comment, as each call to Step Out only applies to the
current call to the function. For every recursive call that has been executed you
need to select Step Out once.

The key combination Shift+F11 is the way to go with Step Out, provided your
current profile is that of ‘Visual Studio Developer’.

Move the Point of Execution

The ability to move the point of execution is old news to Visual Basic developers
but has not been available for other Microsoft development environments before
Visual Studio .NET.

You can only use this function when execution has been halted and you see
the yellow execution pointer in the left margin of VS .NET: . When you
114

5. Avoiding Errors, Testing and Debugging
move the mouse cursor on top of the execution marker, the mouse pointer
changes into an icon which looks like a big right-pointing arrow with two vertical
arrows on its flank: . A balloon text is also displayed stating that you can drag
the execution pointer to another line of code at your own risk!

There’s at least one instance where this can be very useful: to make sure that
every code path is executed. Naturally, the testing phase should execute every
code path in your application but moving the point of execution manually allows
you to make sure your code will pass the tests with flying colours.

Watch Expressions, QuickWatch and QuickestWatch

Watch expressions are used when there’s a certain variable or certain variables
whose contents you want to keep an eye on during execution.

QuickWatch

QuickWatch can be called for any entity in source code, variables, functions and
methods alike (in fact it can be called for any token in the source code, but the
results may be of no use, as when calling it for the token ‘void’: “error: identifier
‘void’ out of scope”).

Figure 5-10: QuickWatch window displaying information for a variable named regions.

QuickWatch lets you inspect the contents of compound variables such as the one
shown in figure 5-10.

There are at least three ways to call upon QuickWatch: type Ctrl+Alt+Q, se-
lect a token and then select QuickWatch from the shortcut menu (right click) or
open the Debug menu and then select QuickWatch.

Notice that when the QuickWatch window is displayed, you can turn the
QuickWatch into a regular watch by clicking on the button Add Watch.

QuickestWatch

There is no function called QuickestWatch, we were simply at a loss for a name
to assign to the function that’s called whenever you let the mouse pointer hover
over a variable name – the function that uses a balloon window to display the cur-
115

Debugging Is a Three-Pronged Choice
rent contents of the variable, like this: . As regions is a compound
variable, it is not practical to display its contents in the balloon window; instead
the value of one its significant attributes is displayed, in this instance Count.

Handling Exceptions

You have the option of letting the debugger handle exceptions either before ex-
ceptional handling code or in lieu of it.

Figure 5-11: Settings for handling, or not, exceptions in the VS.NET debugger.

Figure 5-11 shows that you can control the exception handling or individual ex-
ceptions or whole groups, such as Common Language Run-time, CLR, excep-
tions.

Even if you employ your own exception handling in code, which you should,
these exception handling capabilities allow you more freedom during debugging.

Call Stack

Becoming ‘friends’, or at least on speaking terms, with the Call Stack is important
when you develop solutions with EPiServer, as the Call Stack will help answering
the all-important question: ‘how did my code end up here?’ As Visual Studio
.NET is a versatile development environment, the Call Stack window can be dis-
played anywhere you wish. You will always be able to get to it by opening the De-
bug menu, then Windows and finally selecting Call Stack (or press Ctrl+Alt+C
on the keyboard).

Figure 5-12: Call Stack window.
116

5. Avoiding Errors, Testing and Debugging
Take a look at the screen dump in figure 5-12. The Call Stack really is presented
like a stack; the latest item is at the top of the stack, nearest the top of the figure.
Since there are three calls to CollectRegions at the top of the stack, we can safely
assume that out of the three calls two are recursive calls. At the bottom of the
stack, meaning the oldest call, we see a call to Default.Page_Load, which is hardly
surprising since Page_Load is usually called first for any ASP.NET Web Form.
Before that call, being the first, we only see the text ‘[<Non-user Code>]’, imply-
ing that we did not create that code ourselves, again an accurate statement.

Command Window: Command Mode and Immediate Mode

The Command Window is quite handy and something that should be familiar to
Visual Basic developers as such developers had access to similar functionality in
the Immediate window of Visual Basic 6.0 and earlier. It features two different
modes of operation:

Command Mode lets you execute Visual Studio commands, including those
that aren’t available in menus

Immediate Mode allows you to display the contents of variables, call func-
tion, and more

The same pane is used for both the Command Mode and Immediate Mode.
You’ll probably find that Immediate Mode is the one more frequently used.

With the Command Window - Immediate Mode you may:

Display contents of variables including compound variables

Change the content of variables

Evaluate expressions
‘

The syntax in Immediate Mode is very similar to that of C# itself, meaning that
a statement such as ‘Index = 3’ assigns the number 3 to the variable Index, pro-
vided there is a variable Index declared within the current scope.

To print the contents of a variable, you start the line with a question mark:
‘?Index’. Remember that the case-sensitivity of Immediate Mode follows that of
the current development language; when using Visual C# .NET Immediate
Mode is case-sensitive (‘index’ is not the same as ‘Index’).
117

Use the Logging Capabilities Introduced with EPiServer 4.3
The Immediate Mode of the Command Window is invoked by pressing
Ctrl+Alt+I or by opening the Debug menu, choosing Window and finally choos-
ing Immediate.

Figure 5-13: Command Window in Immediate Mode.

The screen dump in figure 5-13 is the result of displaying the contents of two var-
iables during the debugging session of an EPiServer application.

The variable regions is an array variable declared as System.Collections.Array-
List, but it only holds objects of type EPiServer.WebControls.Region. The Re-
gion class has a string property ID (inherited from System.Web.UI.Control). We
wish to display ID, since it’s the name of a region set up in a Framework Defini-
tion File and used by the Page Template File which was used to create the EPiS-
erver Page Type we’re currently debugging. Hence this command line in
Immediate Mode:

Example 5-17: Command line in Immediate Mode to display the contents of the ID property.

?((EPiServer.WebControls.Region) regions[0]).ID

The other command line prints the contents of the property NewsCount. This
property is one added to the EPiServer Page Type Start page, from which the
site’s start page was later created in EPiServer Edit mode.

Example 5-18: Command line in Immediate Mode to display the contents of CurrentPage["NewsCount"].

?CurrentPage["NewsCount"]

As an interesting aside, if instead of ‘CurrentPage["NewsCount"]’ you use the
equivalent ‘CurrentPage.Property["NewsCount"]’ the result is the same but you
will see a different ‘trail’ displayed in the Command Window, one which also tells
you that this particular property has a data type of EPiServer.Core.PropertyNum-
ber.

Use the Logging Capabilities Introduced with EPiServer 4.3

As of EPiServer 4.3, you as a developer now have access to an array of built-in
logging capabilities. The logging system in EPiServer uses the log4net framework
and we therefore recommend that you read the introduction on the log4net Web
site (http: //logging.apache.org/log4net).
118

5. Avoiding Errors, Testing and Debugging
Logging is controlled from a configuration file named EPiServerlog.config
and should be placed in the same folder as the application’s web.config file. The
logging configuration settings were deliberately kept out of the web.config file for
a number of reasons – one being that if you want to enable logging when the ap-
plication has entered a bad state, you have to change and save the configuration
file. If the information is in web.config, the Web application would be restarted
when you save web.config, possibly clearing the cause of the problem which you
wanted to log. Keeping the log configuration separate from web.config eliminates
this problem.

Statistics logging

EPiServer has one specific logger which generates output which can be used for
statistics analysis similar to traditional Web log analysis. This is the EPiServer.Di-
agnostics.StatisticsLog. The reason for its existence is that a dynamic Web site
may exhibit behaviour that is different from a static site. For example when a per-
son views the start page of an intranet site, she may be presented with a headline
news item and two smaller product related news items. The Web site owner may
want to have information about the specific news items being read, so this single
‘start page hit’ should actually be counted as three separate ‘content’ hits.

The statistics logging function in EPiServer is designed to support such be-
haviour. It should not usually be considered as a replacement for the traditional
IIS log file since the EPiServer log will not register information concerning image
files (e.g. GIF) or other static file accesses.

Optimising Performance

A truly great book which should be a part of every serious developer’s library is
Code Complete by Steve McConnell. In the chapter ‘Code-Tuning Strategies’ he
cites Michael Jackson’s (remember Jackson Structured Programming, JSP?)
‘Rules of Optimisation’:

1. Don’t do it.

2. [For experts only] Don’t do it yet.

Apparently the corollary to the second rule should be: ‘Don’t do it until you have
a perfectly clear and unoptimised solution’. Or, in other words, first solve the
problem, then (and only then) make the solution faster.

More Rules

If we are allowed some presumptuousness, we would add two more corollaries
to Jackson’s rules:

3. Never optimise until you’ve profiled.

4. Changing algorithms can make your solution a lot faster than tweaking code.
119

Optimising Performance
What Is Taking So Long?

There are over a zillion stories about optimising the wrong part of an application.
One contender for the top spot must be the one where a group of programmers
optimised the idle loop of an operating system to make it 50% faster!

But seriously, you need to find the areas in your application which are using
up the most time. This can be done in several ways. An easy way is to let your
application simply print the current time to a log file and then analyse the results.
Another way is to use a profiling tool. You will find some low-cost profilers for
Microsoft .NET Framework applications at SourceForge (http://sourceforge
.net), for example:

NProf, ‘.NET profiler and generic profiling API’

NProfiler, ‘An application profiler for .NET’

There are also commercial profilers, these are but a few examples:

Red-Gate ANTS Profiler

AutomatedQA AQTime .NET Edition

DevPartner Profiler

Rational Quantify for Windows

Borland OptimizeIt Profiler for the Microsoft .NET Framework

Of course, using a profiler makes your application very sluggish, but that’s a non-
problem since you’re not interested in absolute speed, you simply want to find
out which parts of your code use up the most execution time.

Figure 5-14 is from a session using NProf to profile the EPiServer example
Web site.

Figure 5-14: Results from an ASP.NET application profiling in NProf.
120

5. Avoiding Errors, Testing and Debugging
Change Algorithms

People are great for many things, e.g. if you find yourself stuck and cannot think
of an alternative way to solve a particular problem, you should try asking col-
leagues or even Internet forums. You will soon notice that ‘she who asks, receives
many a good answer’.

Using the Debug Switch for EPiServer Scheduler Service

The service responsible for scheduled jobs, EPiServer Scheduler Service, has a
Debug switch which makes the services print diagnostic messages. To use this
switch, start the service as a regular program, from the command prompt:

Example 5-19: Command line to start EPiServer Scheduler service with its debug switch.

"C:\Program Files\EPiServer.Scheduler\EPiServer.SchedulerSvc.exe" DEBUG

The command line in example 5-19 is what to expect if you’ve installed EPiServer
on a computer with Windows 2000, XP or Windows Server 2003 installed on
drive C:. Please note that the Debug parameter should be entered exactly as
shown in the example command line: the word ‘DEBUG’, in all capital letters and
not preceded by a dash nor a slash.

When the EPiServer Scheduler service is running in debug mode, it outputs a
message at least once a minute. If you have several Web sites on the same com-
puter, the output strings are colour coded so each Web site gets its own ‘output
colour’.

Example 5-20: Example output from EPiServer Scheduler service in debug mode.

[10.56.32 UTC] #INF# ***

[10.56.32 UTC] #INF# * EPiServer Scheduler Service running in DEBUG mode

[10.56.32 UTC] #INF# ***

[10.56.32 UTC] #INF# Loaded queue with 2 sites:

[10.56.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Mimic] http://localhost/Mimic/

[10.56.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Example] http://localhost/Example/

[10.56.32 UTC] #INF# Service started - begin accepting connections

[10.56.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Mimic] Site listener started

[10.56.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Example] Site listener started

[10.56.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Mimic] New scheduled job 2004-03-01 11.31.14
(7d8fad39-2682-43b6-b49c-d7c8199d5195)

[10.56.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Example] New scheduled job 2004-03-01 11.31.14

(7d8fad39-2682-43b6-b49c-d7c8199d5195)

[10.57.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Mimic] No new scheduled jobs, currently waiting for

2004-03-01 11.31.14 (7d8fad39-2682-43b6-b49c-d7c8199d5195)

[10.57.32 UTC] #INF# [_LM_W3SVC_1_ROOT_Example] No new scheduled jobs, currently waiting for

2004-03-01 11.31.14 (7d8fad39-2682-43b6-b49c-d7c8199d5195)

…

121

Using the Debug Switch for EPiServer Scheduler Service
[11.31.13 UTC] #INF# [_LM_W3SVC_1_ROOT_Mimic] Execute job 7d8fad39-2682-43b6-

b49c-d7c8199d5195

[11.31.13 UTC] #INF# [_LM_W3SVC_1_ROOT_Example] Execute job 7d8fad39-2682-43b6-

b49c-d7c8199d5195

[11.31.14 UTC] #INF# [_LM_W3SVC_1_ROOT_Example] New scheduled job 2004-03-01 12.31.14

(7d8fad39-2682-43b6-b49c-d7c8199d5195)

[11.31.15 UTC] #INF# [_LM_W3SVC_1_ROOT_Mimic] New scheduled job 2004-03-01 12.31.14

(7d8fad39-2682-43b6-b49c-d7c8199d5195)

…

All output from EPiServer Scheduler in debug mode is stamped with time in
UTC (Universal Time Coordinated, a.k.a. Greenwich Mean Time).

If you’ve been adding and deleting EPiServer Web sites, the sites data file for
EPiServer.SchedulerSvc.exe, EPiServer.SchedulerService.Sites.xml, might con-
tain more EPiServer Web sites than are current installed on your Web server. In
this case you can manually remove those Web sites from EPiServer.Scheduler-
Service .Sites.xml. You need to change this in three sections of the XML file. First
remove the obsolete Web sites from the first SOAP-ENC:Array section. Having
done that, change the number in brackets for xsd:anyType so it reflects the new
number of Web sites.

Example 5-21: Example of SOAP-ENC:Array section listing Web sites in EPiServer.SchedulerService.Sites
.xml.

<SOAP-ENC:Array id="ref-2" SOAP-ENC:arrayType="xsd:anyType[2]">

<item id="ref-6" xsi:type="SOAP-ENC:string">_LM_W3SVC_1_ROOT_Mimic</item>

<item id="ref-9" xsi:type="SOAP-ENC:string">_LM_W3SVC_1_ROOT_Example</item>

</SOAP-ENC:Array>

Do the same for the second SOAP-ENC:Array section.

Example 5-22: Example of SOAP-ENC:Array section listing Web sites in EPiServer.SchedulerService.Sites
.xml.

<SOAP-ENC:Array id="ref-3" SOAP-ENC:arrayType="xsd:anyType[2]">

<item href="#ref-12"/>

<item href="#ref-15"/>

</SOAP-ENC:Array>

Lastly, remove all superfluous a3:SiteConnect sections so only the relevant ones
remain.

Example 5-23: Example of an a3:SiteConnect section.

<a3:SiteConnect id="ref-12" xmlns:a3="http://schemas.microsoft.com/clr/nsassem/EPiServer

.SchedulerService/EPiServer.SchedulerSvc%2C%20Version%3D4.22.0.98%2C%20Culture

%3Dneutral%2C%20PublicKeyToken%3Dnull">

<sSiteUnique href="#ref-6"/>
122

5. Avoiding Errors, Testing and Debugging
<sSiteURL id="ref-21">http://localhost/Mimic/</sSiteURL>

<sRemoteObjectURL id="ref-22">pipe://_LM_W3SVC_1_ROOT_Mimic/Callback.rem

</sRemoteObjectURL>

</a3:SiteConnect>

You don’t have to change any IDs, so you can keep all ‘ref-n’ and ‘#ref-n’ intact.
What’s important is that the numbers in brackets for xsd:anyType are correct and
that there are as many a3:SiteConnect sections as there are Web sites.
123

Using the Debug Switch for EPiServer Scheduler Service
124

6
EPiServer Base Classes and Interfaces

Developing solutions with EPiServer 4, you will be working with both EPiServer
code libraries and Microsoft .NET Framework. Knowing what’s available will
save many hours of unnecessary coding for you and will even be able to solve
problems you had previously thought to be unsolvable.

In this chapter we’ll take a closer look at these base classes and interfaces:

EPiServer.PageBase (ancestral class of these:)

EPiServer.SimplePage

EPiServer.EditPage

EPiServer.TemplatePage

EPiServer.SystemPage

EPiServer.Util.LoginBase

EPiServer.UserControlBase

EPiServer.Core.PageData

EPiServer.Core.IPageSource

EPiServer.Global

EPiServer.ApplicationConfiguration

The Ever-Present Web Page Tree

When developing solutions with EPiServer, you will notice that you’re not simply
dealing with a set of Web pages without any inter-relationships. As you’ll see,
some of the control class types in EPiServer.WebControls handle the Web pages
as part of a hierarchical tree structure (more on these in chapter 7, EPiServer Web
Controls), and you’ll soon realise that this page tree is everywhere.

This tree structure is realised in the EPiServer database table tblPage by using
two attributes (columns): pkID and fkParentID. The attribute pkID is simply the
integer page ID (used as primary key for tblPage). The other attribute, fkParen-
tID, is an internal foreign key as it ‘points’ to pkID in the same table. (For steps
125

PageBase, UserControlBase and PageData: When to Use What
to create a Microsoft Transact-SQL stored procedure to visualise the tree, see
page 320.)

There’s a third attribute that’s important to the page tree. Its name is Visi-
bleInMenu and its value controls whether or not the Web page should be pre-
sented in menus and lists. That's fair enough you may ask, but how does that
affect you? Well, that too will be addressed in the chapter entitled EPiServer Web
Controls, as the effects are noticed when working with some of the EPiServer Web
Custom Controls. As a general rule, VisibleInMenu is set to 1 for the pages that
constitute the Web site or are used in EPiServer and to 0 for pages such as saved
user profiles, pages that do not have a role in presenting the Web site to the av-
erage user.

PageBase, UserControlBase and PageData: When to Use What

The overall EPiServer object model is easy and small. When you need to handle
other Web Pages as objects from inside a Web Page, but outside any User Con-
trols, the choice is the PageBase class. From inside User Controls, you go with
UserControlBase (the mother class for EPiServer User Controls). Notice that
both PageBase and UserControlBase have a method called GetChildren, which
returns all child pages to a specified page, using the already mentioned page tree
(also notice that GetChildren is specified in the interface IPageSource, see
page 153).

To access attributes on Web Pages, you use PageData irrespective of whether
the current context is that of a Web Page or a User Control.

EPiServer.PageBase

Being the mother class for all ASP.NET Web Forms to be used as EPiServer
Page Templates, PageBase is very important indeed. Suffice it to say that should
you try to use anything but Page Templates that inherit from EPiServer.PageBase
to create Page Types and eventually EPiServer Web Pages, no dynamic content
will ever be presented on the page.

Be aware that it is not at all unlikely for this to happen and the only clue to
what’s going on is that nothing that’s been added to the Web Page in Edit mode
is visible in View mode. Beware of any Web Forms inheriting from ‘System.Web
.UI.Page’. Please note that it is perfectly legal, and sometimes a good choice, to
use non-EPiServer Web Forms in an EPiServer solution.

PageBase is an abstract class (MustInherit in Visual Basic .NET), which is very
advantageous when you’re dealing with objects since every Web Page you’ll be
handling is, or at least should be, a descendant of PageBase. In other words, ob-
ject variables declared as EPiServer.PageBase can handle any Web Page and cast-
ing with ‘(EPiServer.PageBase)’ will always enable access to all attributes and
methods defined for objects of PageBase descendant classes.
126

6. EPiServer Base Classes and Interfaces
EPiServer.PageBase itself inherits from System.Web.UI.Page, which has the
core functionality for setting up and rendering a standard Web form (aspx file).
The PageBase class extends the functionality of the Page class with EPiServer
specific features such as access to configuration settings (Configuration proper-
ty), user information (CurrentUser property) and information about the current
EPiServer page (CurrentPage property.)

PageBase also implements the interface IPageSource interface, which enables
retrieval of other EPiServer pages.

The most important part of the object model for PageBase looks like this:

Figure 6-1: Object model for EPiServer.PageBase.

The class tree for PageBase is quite shallow, but still covers most needs.

Figure 6-2: Inheritance tree for class EPiServer.PageBase.

Example 6-1: Declaration for class PageBase in Visual Basic .NET, C# and JScript .NET.

Visual Basic: Public MustInherit Class PageBase

Inherits Page

Implements IPageSource

C#: public abstract class PageBase : Page, IPageSource

JScript: public abstract class PageBase extends Page implements IPageSource

GetChildren (PageDataCollection) PageData

GetPage (PageData)

CurrentPage (PageData)

CurrentPageLink (PageReference)

Configuration (ApplicationConfiguration)

CurrentUser (UnifiedPrincipal)

EPiServer.PageBase

EPiServer.PageBase

EPiServer.SystemPageEPiServer.SimplePage

EPiServer.Util.LoginBase EPiServer.Util.LinkBaseEPiServer.EditPage

EPiServer.TemplatePage
127

EPiServer.PageBase
When you write code for a User Control, you’ll often want to cast the control’s
Page property (which is a System.Web.UI.Page type) to a PageBase class in order
to get to the EPiServer page information.

Example 6-2: Cast using EPiServer.PageBase.

// From inside a user control

string pageName = ((EPiServer.PageBase) Page).CurrentPage.PageName;

Public Properties for EPiServer.PageBase

EPiServer.PageBase has many public properties, public methods, public events
and also protected properties and methods. The following tables describe the
most important of these.

Public Methods for EPiServer.PageBase

The public methods for EPiServer.PageBase comprise the tow implemented for
IPageSource, a couple dealing with access permissions, one used to check wheth-

Table 6-1: Public properties for EPiServer.PageBase.

Automatic-
Translation

Select the type of automatic translation of controls that will
take place.

Configuration Get the configuration object.

CurrentPage Currently loaded page on templates [EPiServer.PageData]
(from EPiServer.IPageSource).

CurrentPageLink Get the reference to the current page [EPiServer.Core
.PageReference]. (You can safely assume that EPiServer.Core
.PageReference is an integer and the same as the pkID column
in tblPage.)

CurrentUser Get current EPiServer user [EPiServer.Security.UnifiedPrinci-
pal].

EPCharset The character set encoding to use for displaying the current
page [string].

EPLanguage Determine the user interface language that the page uses
[string].

EPLocale The locale ID to use for formatting date, time, numbers, etc.
[int]
128

6. EPiServer Base Classes and Interfaces
er a named property (PropertyData) exists and has been assigned a value, and one
to help in translation.

More Information on Using the Public Properties and Methods in EPiServer.PageBase

PageBase.Configuration

PageBase.Configuration holds no surprises; it deals exclusively with configura-
tion settings. The attribute proper is of the type EPiServer.ApplicationConfigu-
ration (see page 156).

Example 6-3: Using PageBase.Configuration and PageBase.CurrentPage.

protected void SendEmailButton_Click(object sender, System.EventArgs e) {

if (! IsValid) {

Table 6-2: Public methods for EPiServer.PageBase.

AccessDenied Invoked when the current user’s access permissions are not
sufficient for the operation she is trying to perform.

CheckAccess Verify that access control requirements are met for the cur-
rent Web request.

GetChildren Retrieve a PageData listing based on supplied EPiServer
.Core.PageReference argument (from EPiServer.IPage-
Source).

GetPage Retrieve a PageData object based on supplied EPiServer
.Core.PageReference argument (from EPiServer.IPage-
Source).

IsValue Determine if the named property exists and contains a
non-null value (same functionality as in EPiServer.User-
ControlBase).

QueryAccess The access level that the current user holds to the current
page.

QueryDistinctAccess Verify that access control requirements are met for the cur-
rent Web request.

RequiredAccess Determine the access level that is required for the current
Web request.

Translate Translate the given string to the current language (same
functionality as in EPiServer.UserControlBase).

ValidatePageTemplate Make sure that the right page template is used to present a
page
129

EPiServer.PageBase
return;

}

System.Web.Mail.MailMessage mail= new System.Web.Mail.MailMessage();

mail.BodyFormat= System.Web.Mail.MailFormat.Text;

mail.From = From.Text;

mail.To = To.Text;

mail.Subject = Subject.Text;

mail.Body = Other.Text;

mail.Body += "\n\n" + Configuration.HostUrl + CurrentPage.LinkURL;

mail.Body += "\n\nMessage was sent from IP address " + Request.UserHostAddress + " at " +

System.DateTime.Now.ToString();

Configuration.InitSmtpServer();

System.Web.Mail.SmtpMail.Send(mail);

Page.RegisterStartupScript("CloseWindow", "<script type='text/javascript'>

window.returnValue = true;window.parent.close();</script>");

}

The code in example 6-3 is used in the example Web site to send e-mail. Both
Configuration and CurrentPage are used. Configuration is used to initialise the
mail server and also, together with CurrentPage, to send information to the re-
cipient of the e-mail (current HostUrl and LinkUrl).

Example 6-4: Using Configuration to display information about the start page for the Web site.

<tr><td>ID of Start Page: <%= Configuration.StartPage.ID %></td></tr>

In example 6-4, Configuration is used simply to display information about the
Web site’s start page (compare this example with 6-40 on page 155).

Example 6-5: Using Controls property.

private void ShrinkFramework() {

if (FrameworkSelector.ActiveFramework == null) {

return;

}

Table minatureTable = PreviewLoader.GetFrameworkMap(FrameworkSelector.ActiveFramework, 2);

if (minatureTable != null) {

FrameworkSelector.Controls.Add(minatureTable);

}

FrameworkSelector.Controls.Remove(FrameworkSelector.ActiveFramework);

}

130

6. EPiServer Base Classes and Interfaces
PageBase.Controls

Although Controls is inherited from System.Web.UI.Control, it might still be of
interest since Controls not only comprises ASP.NET and HTML controls but
also EPiServer Web Custom Controls (from the EPiServer.WebControls name
space). The code in example 6-6 uses Controls to enumerate all Region controls
on the current page. This would make sense if the current page is an EPiServer
Page Template File which includes a Framework Definition File.

Example 6-6: Using System.Web.UI.ControlCollection.Controls to find all Region control objects on the
current page (included with the Content Framework Definition File).

private System.Collections.ArrayList regions= new System.Collections.ArrayList();

private void Page_Load(object sender, System.EventArgs e) {

if (! IsPostBack) {

DataBind();

CollectRegions(this.Page.Controls);

}

}

private void CollectRegions(System.Web.UI.ControlCollection CurrControls) {

foreach (System.Web.UI.Control SingleControl in CurrControls) {

if (SingleControl is EPiServer.WebControls.Region) {

regions.Add(SingleControl);

}

if (SingleControl.HasControls()) {

CollectRegions(SingleControl.Controls);

}

}

}

A reference to every Region control object is stored in the ArrayList variable re-
gions. CollectRegions is a recursive function which is executed when the page is
loaded, but only on first load, not during post-backs.

PageBase.CurrentPage

A little caution is prudent when using CurrentPage in the HTML part of Web
Forms, since CurrentPage is implemented from IPageSource and EPiServ-
er.UserControlBase also implements IPageSource. This means that CurrentPage
will have different meanings in the same Web Form depending on whether it’s
used outside any included EPiServer Web Custom Control in general and outside
any templated EPiServer Web Custom Control in particular.

Example 6-7: Using PageBase.CurrentPage on a Page Template File, outside of any included controls.

CurrentPage.PageName on a Page Template File, outside of any included controls:

<%= CurrentPage.PageName %>
131

EPiServer.PageBase
The HTML code in example 6-7 results in the PageName property for Current-
Page being displayed, just as expected. In the next example, 6-8, CurrentPage.Pa-
geName is used inside both a ContentFramework and a Content control.

Example 6-8: Using CurrentPage.PageName on a Page Template File, inside ContentFramework and Content
control.

<development:DefaultFramework id="DefaultFramework" runat="server">

<EPiServer:Content ID="NewsListing" Region="menuRegion" runat="server">

CurrentPage.PageName on a Page Template File, inside ContentFramework and Content controls:

<%= CurrentPage.PageName %>

…

Now let’s see what happens if we do the same thing inside a templated control.

Example 6-9: Using PageBase.CurrentPage inside an EPiServer templated control.

<EPiServer:Newslist ID=Newslistnew Pagelinkproperty="NewsContainer" runat="Server"

MaxCount='<%# GetNewsCount() %>'>

<NewsTemplate>

CurrentPage.PageName on a Page Template File, inside Newslist control (in NewsTemplate):

<%= CurrentPage.PageName %>

</NewsTemplate>

</EPiServer:Newslist>

The HTML code in example 6-9 will produce the same results for all the news
items: the name of the page on which the control is included. But say we wanted
to have the name of the page in the page collection that was the result of using
the NewsList control. Well, then we would have to use the Data Binding Expres-
sion Syntax available in ASP.NET.

Remember that ‘<%= expression %>’ in the HTML part of an ASP.NET file
is shorthand for ‘Response.Write(expression)’. In ASP.NET, there is also the new
Data Binding Expression Syntax which allows you to enter expressions such as
‘<%# property name %>’ as an HTML tag. The success of this hinges on the Data-
Bind method being executed for the page in question binding any controls, even
Server controls, to their respective data source. For our NewsList example, we
must use the mysterious templated controls Container property as shown in exam-
ple 6-10. Please note that you must use both Container and ‘#’, otherwise it won’t
work.

Example 6-10: User PageBase.CurrentPage in conjunction with Container in a templated control.

<EPiServer:Newslist ID=Newslistnew Pagelinkproperty="NewsContainer" runat="Server"

MaxCount='<%# GetNewsCount() %>'>

<NewsTemplate>

Container.CurrentPage.PageName on a Page Template File, inside Newslist control (in

NewsTemplate): <%# Container.CurrentPage.PageName %>
132

6. EPiServer Base Classes and Interfaces
</NewsTemplate>

</EPiServer:Newslist>

CurrentPage is useful in code-behind files, too.

Example 6-11: Using PageBase.CurrentPage and PageBase.IsValue.

protected int GetNewsCount() {

return IsValue("NewsCount") ? (int) CurrentPage["NewsCount"] : -1;

}

protected string StartPageImage {

get {

return IsValue("MainImage") ? (string) CurrentPage["MainImage"] : _startPageImage;

}

}

In example 6-11, CurrentPage is used to read the contents of two properties;
NewsCount and MainImage. To safeguard the property access, the presence and
possible contents of both properties are first tested using the method Page.IsVal-
ue.

PageBase.CurrentPageLink

Having the type EPiServer.Core.PageReference makes CurrentPageLink an ex-
cellent candidate for an argument in calls to GetChildren and GetPage. This is
also how it’s often used.

Example 6-12: Using CurrentPageLink to retrieve the PageData object.

PageData tmpPageData = GetPage(CurrentPageLink);

CurrentPageLink has no place inside templated controls, since the Container
property is of the type PageTemplateContainer which doesn’t implement Cur-
rentPageLink.

PageBase.CurrentUser

CurrentUser has a type of EPiServer.Security.UnifiedPrincipal, which is used to
facilitate handling the current Web site user and her access permissions. As part
of the user identity, UnifiedPrincipal lets you handle the account’s Security Iden-
133

EPiServer.PageBase
tified, SID, through a mapping. UnifiedPrincipal has several useful properties and
methods, some of which are presented in the following table.

Example 6-13: Using PageBase.CurrentUser in HTML.

…

<%= CurrentUser.Sid %></td><td><%= CurrentUser.Identity.Name %>

…

The HTML code in example 6-13 displays the EPiServer Security Identifier and
Name property of the Identity property. In the case of the Anonymous user, the
latter would result in the text ‘Anonymous’ being displayed.

(See also example 3-14 on page 48.)

PageBase.EPCharset, PageBase.EPLanguage and PageBase.EPLocale

PageBase.EPCharset, PageBase.EPLanguage and PageBase.EPLocale all deal
with locale and language aspects.

Table 6-3: Some of UnifiedPrincipal’s properties and methods.

Attribute or Method Name Description

AnonymousUser Static field representing the anonymous user. Any user
who is not logged-on can be represented by Anony-
mousUser.

Current Static property returning the UnifiedPrincipal object
for the current HTTP request.

CurrentSid Static property returning the security identity of user
for the current HTTP request.

Identitity Implementation of System.Security.Principal.IIdentity
interface.

Sid EPiServer user account security identifier.

SidList List of EPiServer group account security identifiers.
One item for each group the user belongs to.

ClearCache Static method clearing the cache from this user.

IsInRole Used to check membership in specified group.

IsPermitted Used to check if specified permissions has been
assigned to the user.

UserData An EPiServer.Personalization.PersonalizedData object.
134

6. EPiServer Base Classes and Interfaces
PageBase.AccessDenied

The method AccessDenied can be called in order to display a message to the user
that she, for some reason, has been denied access.

Example 6-14: Using AccessDenied to deny access to a user not logged-on.

public abstract class LoginStatus : EPiServer.UserControlBase {

protected System.Web.UI.WebControls.LinkButtonLogin;

protected void Login_Click(object sender, System.EventArgs e) {

System.Security.Principal.IPrincipal user = Context.User;

if ((user != null) && user.Identity.IsAuthenticated) {

return;

}

PageBase.AccessDenied();

}

}

The code in 6-14 is taken from the Web User Control LoginStatus.ascx which
ships with EPiServer. It must be understood that the click event for ASP.NET
Server control Login has been linked to the function Login_Click, so when the
user clicks the Login button this function is executed. Now, the call to Access-
Denied doesn’t necessarily mean that the user is denied access, it can also be used
to present the user with a log-on dialogue window. This happens in Web User
Control QuickBar.ascx.

PageBase.GetChildren

Using the Web Page Tree as a basis, GetChildren returns possible child objects
as an EPiServer.Core.PageDataCollection (a collection of EPiServer.Core.Page-
Data objects).

Example 6-15: Using PageBase.GetChildren in a code-behind file for a Web Form.

private void WriteRssDocumentFromCurrentPage() {

EPiServer.Core.PageDataCollection ChildPages = GetChildren(CurrentPageLink);

…

foreach (EPiServer.Core.PageData ChildPageData in ChildPages) {

System.Xml.XmlNode item= doc.CreateNode(System.Xml.XmlNodeType.Element, "item", null);

System.Xml.XmlNode itemTitle= doc.CreateElement("title");

itemTitle.InnerText= ChildPageData.PageName;

item.AppendChild(itemTitle);

System.Xml.XmlNode itemLink= doc.CreateElement("link");

itemLink.InnerText= EPiServer.Global.EPConfig.HostUrl + ChildPageData.LinkURL;

item.AppendChild(itemLink);

…

135

EPiServer.PageBase
}

doc.Save(Response.OutputStream);

}

The code in example 6-15 shows how to use PageBase.GetChildren to retrieve a
list of PageDataCollection items containing the child page’s PageData objects.
This collection is then enumerated in order to build an RSS (Really Simple Syn-
dication) object which is finally dispatched to the user’s Web browser.

PageBase.GetPage

GetPage returns the PageData object for the specified EPiServer.Core.PageRef-
erence argument.

Example 6-16: Using PageBase.GetPage and PageBase.CurrentPage to retrieve PageData information for the
page specified in the attribute EventsContainer.

protected EPiServer.Core.PageData EventRootPage {

get {

if (_eventRootPage == null) {

if (CurrentPage["EventsContainer"] != null) {

_eventRootPage =

GetPage((EPiServer.Core.PageReference) CurrentPage["EventsContainer"]);

}

}

return _eventRootPage;

}

}

Example 6-17: Using GetPage to retrieve the PageData object for the current page.

EPiServer PageData tmpPageData = GetPage(CurrentPageLink);

PageBase.IsValue

You have already seen IsValue at work in example 6-11. It’s the safe way to check
whether a property exists and has been assigned contents.

PageBase.QueryDistinctAccess

QueryDistinctAccess uses the combination of the CurrentUser property and the
current PageBase object to decide whether or not the user has Read access.

Example 6-18: Using PageBase.QueryDistinctAccess.

protected void Logout_Click(object sender, System.EventArgs e) {

EPiServer.Security.UnifiedPrincipal user = EPiServer.Security.UnifiedPrincipal.Current;

if (user.Identity.IsAuthenticated) {

if (Configuration.Authentication != System.Web.Configuration.AuthenticationMode.Forms) {
136

6. EPiServer Base Classes and Interfaces
return;

}

System.Web.Security.FormsAuthentication.SignOut();

EPiServer.Security.UnifiedPrincipal.RemoveFromCache(user.Identity);

PageBase.CurrentUser = EPiServer.Security.UnifiedPrincipal.AnonymousUser;

if (! PageBase.QueryDistinctAccess()) {

Response.Redirect(Configuration.RootDir);

}

HandleLoginStatusButton();

}

}

The code in example 6-18 is from the Web User Control QuickBar.ascx. It’s ex-

ecuted each time a logged-on user clicks on the log-off tool-bar button, . If the
anonymous user (who has been made current, ‘PageBase.CurrentUser = EPiS-
erver.Security.UnifiedPrincipal.AnonymousUser;’) does not have access to the
current page, a call to Response.Redirect is made which takes the user to the Web
site’s default page; otherwise no new page is loaded.

PageBase.RequiredAccess

CheckAccess, QueryAccess, QueryDistinctAccess and RequiredAccess all deal
with access permissions. Using RequiredAccess, your code can check the current
user’s access to another page before actually trying to load the page. When called
without any arguments, RequiredAccess checks for Read access.

PageBase.Translate

The method Translate can be used instead of EPLang.Translate (see page 155).
They perform exactly the same duty and take the same arguments.

EPiServer.SimplePage

Base class for EPiServer pages which do not need access to the EPiServer short-
cut menu (right-click menu) or Direct On-Page Editing (see below).

Pages that inherit from SimplePage have all the other capabilities that Tem-
platePage descendants have, meaning you can still add EPiServer Properties and
edit their contents. However, when a Web Page descending from SimplePage is
displayed you will not have access to Admin mode or Edit mode from the short-
cut menu.

Example 6-19: Web Form which inherits from EPiServer.SimplePage.

public class Default : EPiServer.SimplePage {

…

137

EPiServer.EditPage
}

EPiServer.EditPage

Base class for EPiServer pages which need to save page data or create new pages.
As TemplatePage is a child (the only child) of EditPage, any attributes or methods
defined for EditPage will be available for TemplatePage.

Public Properties

Public Methods

Protected Properties

Table 6-4: Public properties for EPiServer.EditPage.

Property Name Description

IgnoreModifiedOnSave Allow a page to be saved without modifying any
content

IsNewPage Check if the query string parameters indicate that
this is a request to create a new page.

Table 6-5: Public methods for EPiServer.EditPage.

Method Name Description

AllowCheckInVersion Determine if the current user is allowed to check in the
version currently being edited

AllowDeleteVersion Determine if the user is allowed to delete the currently
selected version

AllowPublishVersion Determine if the user is allowed to publish the currently
selected version of the page

AllowRejectVersion Determine if the user is allowed to reject the selected ver-
sion of the current page

Table 6-6: Protected properties for EPiServer.EditPage.

Property Name Description

IsPageSaved Indicates if SavePage has been called

IsSave Check if the posted form indicates that this is a request to
save the page
138

6. EPiServer Base Classes and Interfaces
Protected Methods

One such example is the attribute IsNewPage, which is used in the Web User
Control Profile.ascx that is shipped with EPiServer.

Example 6-20: Using EditPage.IsNewPage in Profile.ascx.cs.

private void SavePage() {

if (((EPiServer.EditPage) Page).IsNewPage) {

CurrentPage["Sid"] = PageBase.CurrentUser.Sid;

CurrentPage.PageName = PageBase.CurrentUser.Identity.Name;

CurrentPage.VisibleInMenu = false;

}

EPiServer.Global.EPDataFactory.Save(CurrentPage, EPiServer.DataAccess.SaveAction.Publish);

}

As it is defined for EPiServer.EditPage, it is possible to use IsNewPage both for
classes of the type EditPage, TemplatePage or any other class derived from any
of them. The code in example 6-20 uses IsNewPage to give any new page the
same name as the currently logged-on user (we have to assume that ‘Anonymous’
is not allowed access to Profile.ascx). It also sets the page property Sid to the Sid
of the user and lastly sets VisibleInMenu to false so the page won’t suddenly ap-
pear in menus and page lists (see table 6-11 on page 145).

EPiServer.TemplatePage

EPiServer.TemplatePage is the base class for EPiServer Page Templates that
should support Direct-on-Page-Editing (DOPE) and right-click menu access to
Admin and Edit modes.

TemplatePage has but one public attribute which is not inherited:

NewPageParent The newly created page will be placed below this page

NewPageType Page type of the newly created page

RequestedSaveAction The type of ‘Save’ action that should be performed

Table 6-7: Protected methods for EPiServer.EditPage.

Method Name Description

ParseParameters Get parameters used by the page class

SavePage Save the page data posted in this request

Table 6-6: Protected properties for EPiServer.EditPage.

Property Name Description
139

Creating an EPiServer Page Template File
RightClickMenu (of the type EPiServer.RightClickMenu)

Creating an EPiServer Page Template File

Most EPiServer Page Templates inherit from EPiServer.TemplatePage. They
start out as ordinary ASP.NET Web Forms and are subsequently tailored to the
EPiServer Content Framework.

We’ll create an EPiServer Page Template File from scratch, but for now we’ll
use the example Web site infrastructure.

Open the Example Web Site Solution in Visual Studio .NET

1. Open the EPiServer example Web site in Visual Studio .NET and then open
the templates folder in Solution Explorer.

2. Right-click on ‘templates’ and choose Add–Add New Item. Add a new Web
Form, name it ‘PageTemplateFile.aspx’.

3. Open PageTemplateFile.aspx.cs (select the file name in Solution Explorer
and either click on the tool-bar button , type F7 or use the File menu).

4. Change the inheritance for class PageTemplateFile so it inherits from EPiS-
erver.TemplatePage instead of System.Web.UI.Page. Notice that the name
space is ‘development.templates’ (you can change the first ‘t’ in templates to
to ‘T’ if you wish), which is exactly what we want.

Add a Framework File, Change Prefixes

5. Switch to Design view by clicking on the toolbar button .

6. Add a Framework by dragging the file DefaultFramework.ascx to the design
window.

7. Open the HTML window (still in Design mode) by clicking on the button
labelled ‘HTML’ in the lower left corner of the Design window.

8. Change TagPrefix for DefaultFramework from ‘uc1’ to ‘DefaultFramework’.
Also change the tag to reflect this change:

Example 6-21: Tag for DefaultFramework in Page Template File.

<development:DefaultFramework id="DefaultFramework" runat="server">

</development:DefaultFramework>

EPiServer.SystemPage

Base class for EPiServer system pages such as the Edit and Admin modes.
140

6. EPiServer Base Classes and Interfaces
EPiServer.Util.LoginBase

LoginBase is the base class used to handle forms-based authentication in EPi-
Server. Use it, for example, to implement your own login form, such as redesign-
ing the input box. In doing so, there is no need to re-implement the entire forms
authentication module. Instead, you could simply let your code-behind class in-
herit from this class and re-use the HandleFormsLogin method after you have
collected user name and password. Another reason to use the HandleForms-
Login class might be to implement login from a URL in a low-security/low-threat
environment. Then you could once again collect the user name and password and
call this method to set the login cookie which will be used to authenticate future
requests.

HandleFormsLogin Method

Performs the actual login handling for forms/cookie based authentication

Example 6-22: Using HandleFormsLogin.

public static string HandleFormsLogin(string userName, string password, bool persistCookie)
.

HandleFormsLogin returns a string with the url to redirect to if the authentica-
tion was successful, null if the authentication failed.

EPiServer.UserControlBase

UserControlBase is to EPiServer Web User Controls what PageBase is to EPiS-
erver Page Template Files: it provides access to the EPiServer infrastructure. In
essence, letting a Web User Control inherit from EPiServer.UserControlBase in-
stead of the default System.Web.UI.UserControl turns the plain vanilla User

Table 6-8: Parameters for method EPiServer.Util.LoginBase.HandleFormsLogin.

Parameter Name Comment

userName Name of the user

password Password for the user

persistCookie True if the authentication cookie should be a persistent cookie
141

EPiServer.UserControlBase
Control class into a full-fledged EPiServer Universe member, having access to
EPiServer Web Pages and current configuration settings, among other things.

Figure 6-3: Object model for EPiServer.UserControlBase.

Table 6-9 lists the three attributes that are defined by class UserControlBase.

All of the public methods in UserControlBase have equal counterparts in EPi-
Server.PageBase.

Table 6-9: UserControlBase’s own public attributes.

Attribute Name Description

Configuration Gets the configuration object (same functionality as in EPiServer
.PageBase).

CurrentPage Gets the page data for the current page (from EPiServer.IPage-
Source).

PageBase Returns the executing Page cast to an EPiServer.PageBase class.

Table 6-10: UserControlBase’s own public methods.

Method Name Description

GetChildren Returns an EPiServer.Core.PageDataCollection of child Pages to
specified EPiServer.Core.PageReference (from EPiServer.IPage-
Source).

GetPage Returns a the corresponding EPiServer.Core.PageData object to
the supplied EPiServer.Core.PageReference reference (from EPiS-
erver.IPageSource).

IsValue Determine whether the named property exists and holds a non-null
value (same functionality as in EPiServer.PageBase).

Translate Translates the key into a language specific text (same functionality
as in EPiServer.PageBase).

GetChildren (PageDataCollection) PageData

GetPage (PageData)

CurrentPage (PageData)

Configuration (ApplicationConfiguration)

PageBase (PageBase)

EPiServer.UserControlBase
142

6. EPiServer Base Classes and Interfaces
More Information on Using the Public Properties and Methods in UserControlBase

Only UserControlBase.PageBase differ between EPiServer.UserControlBase and
EPiServer.PageBase; all the other properties and methods have the same purpose
in both PageBase and UserControlBase.

UserControlBase.PageBase

You have already seen UserControlBase.PageBase in action: in the examples 6-
14 (page 135), 6-18 (page 136) and 6-20 (page 139), UserControl.PageBase is
used. Here are some more.

Example 6-23: Using PageBase.CurrentLink (part of a function in the code-behind file for a User Control).

if ((EPiServer.Core.PageReference) CurrentPage["MainSearchPage"] ==

PageBase.CurrentPageLink) {

QuickSearchSpan.Visible= false;

return;

}

In example 6-23, UserControlBase.PageBase.CurrentLink is used to test whether
the current page (in the form of CurrentPageLink) is equal to the contents of the
property ‘MainSearchPage’.

Example 6-24: Using PageBase.CurrentUser (part of the code-behind file for a Web User Control).

public abstract class Subscribe : EPiServer.UserControlBase {

protected System.Web.UI.WebControls.DropDownList Interval;

protected System.Web.UI.WebControls.Panel SubscribeArea;

protected EPiServer.WebControls.SubscriptionList SubList;

protected System.Web.UI.WebControls.TextBox Email;

private void Page_Load(object sender, System.EventArgs e) {

if (! IsPostBack) {

foreach (System.Web.UI.WebControls.ListItem item in Interval.Items) {

item.Selected = System.Int32.Parse(item.Value) ==

EPiServer.Personalization.Subscription.Interval;

item.Text = Translate(item.Text);

}

if (! Page.User.Identity.IsAuthenticated) {

SubscribeArea.Visible = false;

} else {

Email.Text = PageBase.CurrentUser.UserData.Email;

}

}

}

protected void Save_Click(object sender, System.EventArgs e) {

EPiServer.Personalization.Subscription.Interval =
143

EPiServer.Core.PageData
System.Int32.Parse(Interval.SelectedItem.Value);

if (PageBase.CurrentUser.UserData.Email != Email.Text) {

PageBase.CurrentUser.UserData.Email = Email.Text;

}

}

}

Example 6-24 shows how PageBase.CurrentUser can be used. In Page_Load is
first used to assign the currently logged-in user’s e-mail address to the Text prop-
erty of the TextBox control Email (provided the user is logged on). Later, in
Save_Click, there’s a check to make sure that the logged-on user’s e-mail address
is the same as the text stored in Email.Text. If they are not the same, the user’s
data is updated.

EPiServer.Core.PageData

The PageData class contains information about a specific page. This includes the
name of the page (PageName), its reference (PageLink), Url (LinkURL) and
much more. All built-in and custom properties defined for the Page Type are
available through the Property property.

You will notice that the PageData object is in many respects synonymous with
the Web Page it’s holding properties for. One example of this is the Changed
property which holds last change date and time for the PageData object, i.e. the
Web Page.

Figure 6-4: Object model for EPiServer.PageData.

Property (PropertyDataCollection) PropertyData

ToRawPage (RawPage)

ArchiveLink (PageReference)

ACL (AccessControlList)

PageLink (PageReference)

EPiServer.PageData

ParentLink (PageReference)

Category (CategoryList)
144

6. EPiServer Base Classes and Interfaces
There are many public properties defined for EPiServer.Core.PageData.
Table 6-11: Public properties for EPiServer.Core.PageData.

Property Name Description

ACL Access Control List, ACL (List of Access Permissions), of the
type EPiServer.Security.AccessControlList

ArchiveLink Reference to archive page.

Category The categories that this page belongs to

Changed The date on which the page was marked as changed; type is Sys-
tem .DateTime.

ChangedBy The user name of the user who most recently marked the page
as modified. For instance, if a Windows account was used to
create the page, expect a string being returned looking like
‘DOMAIN\User Name’.

Created The date on which the page was created.

CreatedBy The user name of the user who created the page (see
ChangedBy).

Indent Indent level if part of a tree structure.

IsDeleted If page has been deleted.

IsModified Check if page has been modified since load.

Item Access the PropertyData.Value object of properties in the page
object.

LinkURL URL for this page.

PageLink Reference to this page.

PageName Display name of the page.

PageTypeID Page type identifier.

PageTypeName Name of the page’s page type

ParentLink Reference to parent page.

PendingArchive Indicate whether the page should be moved to its archive folder

Property Access property value.

Saved The date on which the page was last saved.
145

EPiServer.Core.PageData
EPiServer.Core.PageData doesn’t define very many public methods.

More Information on Using the Public Properties and Methods in EPiServer.Core.PageData

EPiServer.Core.PageData.ACL

ACL holds the Access Control List for a PageData object. Since PageData has
the attribute Property which is a PropertyDataCollection, ACL effectively con-
trols access to the Web Page. Keep in mind that the Access Control List applies
to all of the PageData object and its attributes. It is not possible to have different
access permissions for different properties.

The Access Control List is comprised of an Access Control Entry, ACE, array
and is accessed by calling the method ACL.ToRawACEArray. Don’t let the word

StartPublish The date on which the page was published.

StopPublish The date on which the page will stop being published. It will be
set to System.DateTime.MaxValue if no stop publish date has
been set.

VisibleInMenu Indicates whether this page should be visible in menus and tree
structures. This setting is important for several of the control
classes in EPiServer.WebControls.

WorkPageID Page version identifier.

Table 6-12: Public methods for EPiServer.Core.PageData.

Method Name Description

CheckPublishedStatus Indicates whether the page is to be displayed based on
publish date

Copy Create a deep copy of the current object (as opposed to a
shallow copy), in the Microsoft .NET sense

InitializeData Give properties on the page a chance to initialize them-
selves with additional data

QueryAccess Return the access level that the current user has to this
page.

ToRawPage Return the current instance converted to a RawPage object

Table 6-11: Public properties for EPiServer.Core.PageData.

Property Name Description
146

6. EPiServer Base Classes and Interfaces
‘Raw’ in the name intimidate you; if you’ve worked with Access Control Entries
in Windows NT, these are very high-level indeed.

Public Methods

Example 6-25: Using ACL.ToRawACEArray to enumerate the Access Control Entries.

foreach (EPiServer.Security.RawACE Ace in CurrentPage.ACL.ToRawACEArray()) {

if ((Ace.Access & EPiServer.Security.AccessLevel.Create) ==

EPiServer.Security.AccessLevel.Create) {

…

}

}

Table 6-13: Public fields for EPiServer.Core.PageData.ACL.

Public Fields Description

AnonymousSidList Static field, returning default SID list used for anonymous
users, i.e. it contains Anonymous and Everyone.

FullAccess Static field returning shortcut for Full access permission.

NoAccess Static field returning shortcut for No access permission.

Table 6-14: Public properties for EPiServer.Core.PageData.ACL.

Public Properties Description

Creator Set/get the owner of the object that the ACL is attached to.

Table 6-15: Public methods for EPiServer.Core.PageData.ACL.

Public Methods Description

Add Add a SID / permission pair to the access control list.

Copy Create a copy of the current instance

QueryAccess Determine the access level for the current user.

QueryDistinctAccess Checks specified access for CurrentUser, specified SID
value or specified list of SID values.

ToRawACEArray Returns an array of EPiServer.Security.RawACE objects
that form the Access Control List.

TranslatableString Returns a string that can be used in calls to Translate to get
a language-specific representation of the access level.
147

EPiServer.Core.PageData
The code in example 6-25 enumerates the EPiServer.Security.RawAce objects
which together form the Access Control List and checks if one of them is the
Create permission (compare this with the code in examples 6-26, 6-27 and 6-28).

Example 6-26: Using ACL.QueryDistinctAccess to check specific access for the current user.

if (CurrentPage.ACL.QueryDistinctAccess(EPiServer.Security.AccessLevel.Create)) {

// Checks whether the currently logged-on user has

// Create permission for the current page.

…

}

Example 6-27: Using ACL.QueryDistinctAccess with CurrentUser.Sid.

if (CurrentPage.ACL.QueryDistinctAccess(EPiServer.Security.AccessLevel.Create, CurrentUser.Sid)) {

// CurrentUser has Create permission.

…

}

Example 6-28: Using ACL.QueryDistinctAccess with CurrentUser.SidList.

if (CurrentPage.ACL.QueryDistinctAccess(EPiServer.Security.AccessLevel.Create, CurrentUser.SidList)){

// CurrentUser is member of a group that has Create permission.

…

}

Example 6-29: Using EPiServer.Security.AccessControlList.AnonymousSidList.

foreach (EPiServer.Security.RawACE Ace in CurrentPage.ACL.ToRawACEArray()) {

foreach (int Sid in EPiServer.Security.AccessControlList.AnonymousSidList) {

if (Ace.SID == Sid) {

// The SID found in the Access Contol Entry belongs

// to the AnonymousSidList.

…

}

}

}

In example 6-29, the SID found in the Access Control List is compared against
the contents of EPiServer.Security.AccessControlList.AnonymousSidList to de-
termine whether the current user SID is one of the less fortunate.

EPiServer.Core.PageData.Changed

Date/time when the page was last changed.
148

6. EPiServer Base Classes and Interfaces
Example 6-30: Using PageData.Changed.

string ChangedDateTime = CurrentPage.Changed.ToString("r");

EPiServer.Core.PageData.ChangedBy

User name of the user who last changed the page.

Example 6-31: Using PageData.ChangedBy.

Page changed by: <%# CurrentPage.ChangedBy %>

EPiServer.Core.PageData.Created, Saved and Changed

Date/time when the page was created. This happens mostly in EPiServer Edit
mode, but pages can be saved when users create profile pages, fill in forms, etc.

PageData.Saved is the sibling of Created. It contains the date/time of last save
operation.

Both Created and Saved are maintained by the EPiServer infrastructure – you
have no control over them. The Changed, on the other hand, is only updated
when a page is changed and CurrentPage.Property["PageChangedOnPublish"]
.Value is True.

EPiServer.Core.PageData.CreatedBy

User name of the user who created the page and saved it for the first time.

EPiServer.Core.PageData.Indent

At first sight, Indent may seem to be of little value. But it is quite useful when
displaying hierarchical tree structures. You will find that several of the Web User
Controls that ship with EPiServer use Indent to visually enhance the hierarchical
quality of tree structures.

Example 6-32: Using PageData.Indent with EPiServer.WebControl.Clear.

<EPiServer:PageTree runat="server" id="Pagedatatree1" PageLink=<%# CurrentNewsGroup %>

EnableVisibleInMenu="false" ExpandAll="True" >

<ItemTemplate>

…

<EPiServer:Clear width='<%# (Container.CurrentPage.Indent - 1)*10 %>' runat="server" />

…

</ItemTemplate>

</EPiServer:PageTree>

The listing in example 6-32 is an example of how Indent can be used in a visual
context. For every new item in the PageTree control listing, the PageData.Indent
property is used to create a transparent GIF picture that is 0, 10, 20 and so on
pixels wide for the first, second and third level pages.
149

EPiServer.Core.PageData
EPiServer.Core.PageData.Item and EPiServer.Core.PageData.Property

PageData Item is the indexer for the PropertyDataCollection PageData.Property.
In C#, the indexers are never used literally; instead the name is replaced by the
indexer parentheses pair. In the case of C#, this means the square brackets, ‘[‘ and
‘]’.

Example 6-33: Using the indexer PageData.Item and PageData.Property.

foreach (string PropName in CurrentPage.Property) {

EPiServer.Core.PropertyData Prop = CurrentPage.Property[PropName];

if (Prop.Value != null) {

// Property exists and has been given a value.

…

}

}

The code in example 6-33 is a good example of how to enumerate the PageDa-
ta.Property collection. Due to a quirk in one of the Microsoft .NET base classes
used to implement PageData.Property, it returns a string array consisting of the
collections keys.

The easiest way to access properties in HTML is to use the EPiServer Web
Custom Control Property (EPiServer.WebControls.Property). Read more about
Property on page 191 and following pages.

EPiServer.Core.PageData.LinkURL

The LinkURL string property contains the page part of the URL for the page, i.e.
to get a complete URL prepend LinkURL with EPiServer.Global.EPConfig.Hos-
tUrl.

Usage of LinkURL can be seen in example 6-3 on page 129).

EPiServer.Core.PageData.PageLink

Being of the type EPiServer.Core.PageReference, PageLink is the unique page
ID. Its use is derived from the way in which EPiServer 4 is structured. Pages are
nothing more than an instance of an EPiServer Page Type and a collection of
Property settings stored in the database. Individual pages are identified by the
pkID column in the database table tblPage and transforming this into a URL we
get something looking like ‘templates/emailpagecontainer.aspx?id=n?’, where ‘n’
is the already mentioned pkID and thus the unique page identifier.

Example 6-34: Using PageData.PageLink in HTML.

<EPiServer:PageList SortBy="PageName" DataSource=<%#PropertySearchControl%> runat="server"

ID="PageListControl">

<ItemTemplate>

…

<input type="checkbox" id="ViewUser<%#Container.CurrentPage.PageLink%>"
150

6. EPiServer Base Classes and Interfaces
name="ViewUser<%# Container.CurrentPage.PageLink %>" />

…

</ItemTemplate>

</EPiServer:PageList>

As PageLink is guaranteed to be unique among all pages in a certain EPiServer
instance, it is used in 6-34 to create unique id’s and names for HTML check box-
es. The code is used to present the viewer with a selection of pages and allows her
to check one or more for further processing. (The PageList control is explained
in more detail on page 182 and following pages.)

EPiServer.Core.PageData.PageName

Not many page settings are under absolute editor control, but PageName is cer-
tainly one of them. Contrary to many a developer’s gut feelings, PageName is not
a 128 bit Globally Unique Identifier, GUID, but rather a descriptive name given
the page in EPiServer Edit mode.

Having realised this, PageName can be used to great benefit in many cases,
such as in templated controls.

Example 6-35: Using PageData.Item, PageData.LinkURL and PageData.PageName.

…

<EPiServer:Newslist ID=Newslistnew Pagelinkproperty="NewsContainer" runat="Server"

MaxCount='<%# GetNewsCount() %>'>

<NewsTemplate>

<tr>

<td class="DateListingText"><%# Container.CurrentPage["PageStartPublish"] %></td>

</tr>

<tr>

<td>

<a href="<%# Container.CurrentPage.LinkURL %>" class="StartPageHeading">

<%# Container.CurrentPage.PageName %>

<%# Container.CurrentPage["MainIntro"] %>

</td>

</tr>

</NewsTemplate>

</EPiServer:Newslist>

…

The HTML code in example 6-35 produces two HTML table rows for every
news item page displayed. The first row displays the content of the Property
PageStartPublish and the second row is an HTML anchor tag where PageDa-
ta.LinkURL is the relative URL for the page and PageData.PageName is used as
151

EPiServer.Core.PageData
a new head line. Please note that PageData.Item is used twice in this HTML code,
as the two attributes PageStartPublish and MainIntro are accessed using the in-
dexer for PageData.Property.

EPiServer.Core.PageData.PageTypeID

PageTypeID is the same as column fkPageTypeID in the database table tblPage.

EPiServer.Core.PageData.PageTypeName

Name of the Page Type used to create this page. Same as the column Name in
the database table tblPageType.

EPiServer.Core.PageData.ParentLink

EPiServer.Core.PageReference type which points to the parent page for this
page. Parent- and childhood is determined by placement in the Web Page Tree.

Example 6-36: Using PageData.ParentLink and PageBase.GetChildren.

if (CurrentPage.ParentLink != EPiServer.Core.PageReference.EmptyReference) {

EPiServer.Core.PageDataCollection siblings = GetChildren(CurrentPage.ParentLink);

…

}

PageData.ParentLink is used twice in example 6-36, first to make sure it contains
a non-empty PageReference and secondly to retrieve the sibling of the current
page.

Example 6-37: Using PageData.ParentLink.

Parent Page Name: <%= GetPage(CurrentPage.ParentLink).PageName %>

The HTML code in example 6-37 results in the name of parent page being dis-
played. For the start page of a Web site, you expect ‘Root’ to be displayed.

EPiServer.Core.PageData.StartPublish and EPiServer.Core.PageData.StopPublish

StartPublish and StopPublish are again settings that are under editor control. Or-
dinarily you need never bother with them, as the EPiServer run-time system takes
care not to publish pages before their StartPublish date/time and stops publish-
ing pages after their StopPublish date/time. (See also PageData.CheckPublish-
Status).

Figure 6-5: StartPublish and StopPublish are controlled from EPiServer Edit mode.

EPiServer.Core.PageData.VisibleInMenu

The setting PageData.VisibleInMenu controls visibility of this page when used
with some Web Custom Controls in EPiServer.WebControls. The rule of thumb
152

6. EPiServer Base Classes and Interfaces
is that menu lists and page lists do not display pages whose VisibleInMenu at-
tribute is set to false. VisibleInMenu is stored in the column VisibleInMenu in da-
tabase table tblPage.

Example 6-38: Using PageData.VisibleInMenu.

CurrentPage.VisibleInMenu = false;

The code in example 6-38 is taken from the Web User Control Profile.ascx, or
rather its code-behind file, which is shipped with EPiServer. Setting PageDa-
ta.VisibleInMenu to false is a preparation for storing the user profile page and
making sure it won’t be displayed with the other Web pages in the site’s Web Page
Tree, which would otherwise happen automatically.

EPiServer.Core.PageData.QueryAccess

QueryAccess returns an EPiServer.Security.AccessLevel object detailing the ac-
cess level that the current user has to the PageData object. Be aware of the dif-
ference between PageData.ACL.QueryAccess and PageData.QueryAccess

EPiServer.Core.IPageSource

IPageSource is quite a lightweight interface. It contains only one public property
and two public methods. The methods defined by this interface are used to re-
trieve page information about other pages in the page tree hierarchy of a site.

The IPageSource interface is implemented by many classes – such as EPiServ-
er.PageBase (and its descendants), EPiServer.DataFactory, EPiServer.WebCon-
trols.PageControlBase (which many EPiServer Web Custom Control classes
inherit from) to name a few. This means that there are ample opportunities for
you to get to other pages or page information working with templates and con-
trols.

IPageSource was created as an interface due to the fact that the GetPage and
GetChildren methods normally have the same implementation independently of
the class that implements IPageSource. The CurrentPage property has different
meanings for different implementations. As an example, CurrentPage on the
PageBase class refers to the currently loaded page (based on the id in the query
string). CurrentPage on Web Custom Control PageList (see page 182) when it’s
used inside a template refers to the currently iterated page in the internal PageDa-
ta collection.
Table 6-16: Public properties for EPiServer.IPageSource.

CurrentPage Returns information about the currently loaded page, or a page in a
collection when used inside a (templated) control.
153

EPiServer.Global
More Information on Using the Public Properties and Methods in EPiServer.IPageSource

As IPageSource is an interface, it doesn’t implement any of its own attributes or
methods itself. It’s a blueprint, not a construction. This means we must always be
aware of which class implementing IPageSource we’re dealing with. For example,
PageBase.CurrentPage returns an EPiServer.Core.PageData object for the cur-
rent page, the same for UserControlBase. However, in a templated control such
as EPiServer.WebControls.PageList CurrentPage instead means the current page
in the iteration.

EPiServer.Global

The Global class is another of the most important classes in EPiServer. This class
is the one used by global.asax for initialisation of the site. The Global class reads
the configuration from disk, sets up the EPiServer.Core.LanguageManager and
registers the authentication modules that are to be used for this site.

As the Global class is globally available, you can use it by just referring to it
like this:

Example 6-39: Using EPiServer.Global.

string siteName;

siteName = EPiServer.Global.EPConfig.SiteName;

If you check the global.asax.cs file on an EPiServer site, you’ll find that the local
Global class inside it inherits from EPiServer.Global. This is a requirement for
the site to work.

Table 6-17: Public methods for EPiServer.IPageSource.

GetChildren Returns a collection of pages directly below the page referenced by
the EPiServer.Core.PageReference parameter.

GetPage Retrieves a PageData object with information about a page, based
on the EPiServer.Core.PageReference parameter.

Table 6-18: Public Properties

BaseDirectory The physical root folder where the site is installed, e.g. ‘d:/INet-
Pub/WWWRoot/Example/’, when using a virtual Internet
Information Services, IIS, folder. Please note that slashes are
used instead of back slashes.

EPConfig Global instance of configuration information.

EPDataFactory Global instance of data factory, i.e. EPiServer.DataFactory.

EPLang Global instance of language information
154

6. EPiServer Base Classes and Interfaces
The Static Properties BaseDirectory, EPConfig, EPDataFactory, EPLang and InstanceName

EPiServer.Global’s five static properties are the preferred way to access certain
application-wide settings. Two of these properties, BaseDirectory and Instance-
Name, are merely string variables containing the local path (on the Web server)
for the installation folder and the IIS Metabase key path, respectively.

EPiServer.Global.EPConfig

EPConfig is an instance of class EPiServer.ApplicationConfiguration, see below.
It’s instantiated by Global.asax. A very important use for EPiServer.EPConfig is
derived from its ability to read, and write, settings in the application’s web.config
file.

Example 6-40: Using EPConfig to display information about the start page for the Web site.

<tr><td>ID of Start Page: <%= EPiServer.Global.EPConfig.StartPage.ID %></td></tr>

EPiServer.Global.EPDataFactory

The EPDataFactory, of the type EPiServer.DataFactory, member is the preferred
way to access the DataFactory class from your code. Do not instantiate your own
DataFactory classes if you are not certain that you have to. A DataFactory object
not created by EPiServer will not use the cache, and the performance will be sig-
nificantly impeded. EPiServer.DataFactory is discussed at length in chapter 9,
Data Modelling.

EPiServer.Global.EPLang

Perhaps the main use for the EPLang property is to translate EPiServer strings
into the current language. EPLang is an instantiation of EPiServer.Core.Lan-
guageManager, which has one property, Directory, and seven methods. It is the
Translate method that is primarily used.

Example 6-41: Using EPLang.Translate in a Web User Control (the ascx file).

<title><%=EPiServer.Global.EPLang.Translate("/editor/tools/font/toolheading")%></title>

Example 6-42: Using EPLang.Translate in JavaScript.

restartConfirmed = confirm('<%= EPiServer.Global.EPLang.Translate("/editor/tools/search/

reachedend") %>');

Translate has two overloaded variants. The first one is used in both example 6-
41 and example 6-42. It takes a string argument, key, in a simplified XML XPath

InstanceName IIS Metabase key path for the application, e.g.
‘_LM_W3SVC_1_ROOT_Example’. Notice that underscore is
used in place of slash.

Table 6-18: Public Properties
155

EPiServer.ApplicationConfiguration
form and returns the proper language string. The key is typically something like
‘/admin/settings/heading’, where the expression closely follows the folder/file/
usage pattern. You can also enter a ‘#’ to automatically construct a path to the
current file. For example, calling the method Translate in the file /templates/
mypage.aspx with key set to ‘#heading’, Translate("#heading") is equivalent to
Translate("/templates/mypage/heading").

Notice that if the key does not begin with a ‘/’ or ‘#’, the key itself is simply
returned as the result. The reason for this behaviour is to be able to use EPiServer
Web Controls that use Translate for visible strings but you might not have trans-
lations in place or you prefer not to translate the text.

The second form of Translate takes two string arguments, the first again being
a key used in the same manner as earlier, and the second argument being a lan-
guage identifier.

Example 6-43: Using EPLang.Translate in code.

string LangName = EPiServer.Global.EPLang.Translate("#invalidsettings", GetSystemLanguage());

The string function GetSystemLanguage is a local function that returns either the
local language setting for the page, if any exists, or the language setting for the
site, in EPiServer.Global.EPConfig["EPsLanguage"].

EPiServer.ApplicationConfiguration

This class is used to save/load information from the applications configuration
file. You can access this object directly from a template page using the Configu-
ration property (defined in PageBase).

If you add your own values to the <appSettings> section in web.config, you
can read those through the Item property (the indexer).

You can also get the configuration settings from the global object EPConfig,
defined as a static member (Shared in VB.NET) in the Global class.

When you make any changes to the configuration settings, remember to call
Persist to save the changes.

Almost all of the settings are available through the Item method / indexer.
Some of the common settings are also exposed with typed properties.

The interfaces support generic objects. However, the internal implementation
only supports data types string, integer and boolean. Be aware of the fact that ac-
cessing a setting that doesn’t exist is not an error but will simply return a default
value. This could lead to a situation where you think a setting has changed but
cannot be read back.

Adding Your Own Settings

If you look in the appSettings sections of an EPiServer solution web.config file,
you will no doubt notice that there’s a prefix scheme at work.
156

6. EPiServer Base Classes and Interfaces
The configuration object names have the syntax ‘EPxNomen’, where ‘EP’ is a
required string literal, the ‘x’ is one of ‘f’, ‘n’ or ‘s’ which indicates data type and
‘Nomen’ is the name of the object. The following table lists the data types and their
default values.

This prefix scheme is not simply a mnemonic for the developer, it has actual bear-
ing on the data type for the setting.

Example 6-44: Testing the prefix scheme in web.config.

EPnRootID: <%= EPiServer.Global.EPConfig["EPnRootID"].GetType().ToString() %>

EPsRootDir: <%= EPiServer.Global.EPConfig["EPsRootDir"].GetType().ToString() %>

EPfEnableUnicode: <%= EPiServer.Global.EPConfig["EPfEnableUnicode"].GetType().ToString() %>

LicensedCompany: <%= EPiServer.Global.EPConfig["LicensedCompany"].GetType().ToString() %>

Putting the code from example 6-44 in the HTML part of a page yields the fol-
lowing results:

Example 6-45: Output from HTML code in example 6-44.

EPnRootID: System.Int32

EPsRootDir: System.String

EPfEnableUnicode: System.Boolean

LicensedCompany: System.String

In other words: prefixing settings in web.config with ‘EPn’ turns the setting into
a true integer value (‘int’ in Visual C# .NET is shorthand for System.Int32), and
so on. Thus, when adding your own settings to web.config, be sure to use the
proper prefix. Without the prefix schemes, EPiServer doesn’t meddle so those
settings retain the System.String data type.

Use EPiServer.ConfigFileSettings to Create New Settings

In order to add a new setting to the web.config file from code, you use the
SetAppSetting method defined for the EPiServer.ConfigFileSettings class.

Example 6-46: Adding the setting EPnImportantValue to the web.config file.

int ImportantValue= 17;

…

EPiServer.Global.EPConfig.ConfigFile.SetAppSetting("EPnImportantValue", ImportantValue.ToString());

Table 6-19: Prefixes used for settings in the appSettings section of web.config file.

Key Prefix Data Type

EPf Boolean (flag). Default value is false.

EPn Numeric value. Default value is 0 (zero).

EPs System.String. Default value is System.String.Empty.
157

EPiServer.ApplicationConfiguration
EPiServer.Global.EPConfig.ConfigFile.Persist();

Settings May Be Encrypted

It’s easy to protect individual settings in web.config by encryption. When the set-
ting is created simply prepend its value with ‘encrypt:’ and the value will be stored
in encrypted form. Encryption is then transparent to your code; decryption will
be taken care of by the EPiServer infrastructure.

Example 6-47: Adding the setting EPsInnocuousValue to the web.config file.

string SecretKey= "!#¤%/";

…

EPiServer.Global.EPConfig.ConfigFile.SetAppSetting("EPsInnocuousValue", "encrypt:" + SecretKey);

EPiServer.Global.EPConfig.ConfigFile.Persist();

Public Properties and Methods for EPiServer.ApplicationConfiguration
.

Table 6-20: Public properties for EPiServer.ApplicationConfiguration.

Property Name Description

Authentication Gets the authentication mode that is in use for the
application.

BackendSite Name of this site when communicating with other
servers

CacheListeners Site names that listens to cache changes

CachePolicyTimeout The timeout policy for content

CacheSpinlockCount The number of attempts that the page cache will
make to wait for pending read operations.

CacheSpinlockTimeout The timeout in milliseconds for each pending read.

CacheVaryByCustom Vary by custom values resolved in global.asax.

CacheVaryByParams Vary by query string parameters.

ConfigFile Get the ConfigFile used to save / load the configu-
ration settings.

ConnectionString The connection string to use for accessing the local
database. Stored in the EPsConnection setting in
appSettings in web.config.

CookieRequireSSL Get information about the RequireSSL setting
158

6. EPiServer Base Classes and Interfaces
CssPath Path to CSS style file.

DisableKeepUserLoggedOn If users should be kept logged on.

EPiServer3Compability Returns true if the system is running in EPiServer 3
compatibility mode.

HasAdminAccess Tests whether the current user has access to EPiS-
erver admin mode

HasEditAccess Tests whether the current user has access to edit
mode

HostUrl Returns a URL which points to this host.

IsDirty Checks whether changes have been made to the
configuration settings.

IsSensitive-
InformationEncrypted

Checks whether all sensitive system settings are
encrypted.

Item Access individual configuration settings. Item is the
indexer for ApplicationConfiguration.

LocalSite Name of this site when communicating with other
servers.

LoginUrl Returns the url to the file used for form-based
authentication.

LogoffTimeout Gets the inactivity timeout (in minutes) used for
forms authentication.

PageCacheTimeout Number of hours to store pages in cache

PhysicalUploadDir Physical folder for uploaded files. To get the virtual
path, use the UploadDir property.

QueryTimeout The time (in seconds) to wait for database queries to
execute.

RemotePageCacheTimeout Number of hours to store remote pages in cache

RootDir Root folder for site.

RootPage Root page for this instance.

Table 6-20: Public properties for EPiServer.ApplicationConfiguration.

Property Name Description
159

EPiServer.ApplicationConfiguration
More Information on Using the Public Properties and Methods in ApplicationConfiguration

All the examples below use either EPiServer.EPConfig, PageBase.Configuration
or UserControlBase.Configuration. Don’t be alarmed, there’s only one set of
configuration settings. The reason for having multiple access paths is simply one
of convenience, to allow you to choose the most convenient and appropriate path
depending on the context.

SafeHtmlTags An array of HTML tags considered safe for public
use.

SiteName Name of site.

StartPage Start page for this instance.

UploadDir Virtual folder for uploaded files. To get the physical
path, use the PhysicalUploadDir property.

ValidatePageTemplate Returns true if the system should validate that the
page template matches the specified template.

Version Gets the assembly name and version.

Wastebasket Wastebasket for system.

Table 6-21: Public methods for EPiServer.ApplicationConfiguration.

Method Name Description

Exists Checks whether the setting has an explicit value set.

InitSmtpServer Initializes the SMTP server which will be used by all mail func-
tions. Call this function before sending mail using the Sys-
tem.Web.Mail.SmtpMail.Send() function to be certain that the
correct SMTP server is used. The default SMTP server name
can be defined in the EPsSmtpServer key in web.config. If not
defined, ‘localhost’ is used.

IsEncrypted Tests whether the configuration value is stored in encrypted
form

Persist Save any changes to the configuration file.

SwitchToTest Change configuration entries to their test counterparts.

Table 6-20: Public properties for EPiServer.ApplicationConfiguration.

Property Name Description
160

6. EPiServer Base Classes and Interfaces
EPiServer.ApplicationConfiguration.Authentication

Authentication is read-only and of the type System.Web.Configuration.Authen-
ticationMode and can thus be one of Forms, None, Passport or Windows.

Example 6-48: Using read-only attribute EPiServer.Global.EPConfig.Authentication.

…

protected System.Web.UI.WebControls.LinkButton Logout;

…

Logout.Visible = (EPiServer.Global.EPConfig.Authentication == AuthenticationMode.Forms);

In example 6-48, the read-only attribute Authentication is used to control wheth-
er the LinkButton Logout should be visible or not. (If Forms authentication is
active, there has been an explicit log-on to the Web site and therefore a log-off is
conceivable.)

Since the code from example 6-48 was taken from a Web User Control inher-
iting from EPiServer.UserControlBase, it could as well have been written like
this:

Example 6-49: Using read-only attribute UserControlBase.Configuration.Authentication.

…

protected System.Web.UI.WebControls.LinkButton Logout;

…

Logout.Visible = (Configuration.Authentication == AuthenticationMode.Forms);

EPiServer.ApplicationConfiguration.ConfigFile

The ConfigFile attribute is the structured way of getting access to the contents of
the web.config file.

ConfigFile has a type of EPiServer.ConfigFileSettings, which in turn has a few
attributes and methods itself. One of these attributes is AllAppSettings, which is
System.Collections.Specialized.NameValueCollection holding all settings in the
appSettings sections.

Example 6-50: Displaying the name of all settings in the appSettings section–code-behind file.

protected System.Web.UI.WebControls.DataListConfigFileSettings;

private void Page_Load(object sender, System.EventArgs e) {

if (! IsPostBack) {

DataBind();

ConfigFileSettings.DataSource = EPiServer.Global.EPConfig.ConfigFile.AllAppSettings;

ConfigFileSettings.DataBind();

}

}

161

EPiServer.ApplicationConfiguration
Example 6-51: Displaying the name of all settings in the appSettings section–HTML part.

<asp:DataList id="ConfigFileSettings" runat="server" >

<HeaderTemplate>

Configfile settings.

</HeaderTemplate>

<ItemTemplate>

<asp:label Text='<%# DataBinder.Eval(Container, "DataItem") %>'

id="Label1" runat="server" />

</ItemTemplate>

</asp:DataList>

The code in example 6-50 and 6-51 used together in a Web Form produce a list-
ing of all the names of settings in the appSettings section in the web.config file.

EPiServer.ApplicationConfiguration.HostUrl

HostUrl is used in example 6-3 on page 129 and 6-15 on page 135. Both those
examples could be rewritten to use the ‘other’ route to access HostUrl.

Example 6-52: Using EPiServer.Global.EPConfig instead of Configuration in the same code as 6-3.

mail.Body += "\n\n" + EPiServer.Global.EPConfig.HostUrl + CurrentPage.LinkURL;

…
EPiServer.Global.EPConfig.InitSmtpServer();

Example 6-53: Using Configuration instead of EPiServer.Global.EPConfig in the same code as 6-15.

…

itemLink.InnerText= Configuration.HostUrl + ChildPageData.LinkURL;

…

EPiServer.ApplicationConfiguration.RootDir

RootDir is one of the configuration settings you’ll probably use all the time. It
saves you from having to hard-code folder paths, which in itself justifies the pres-
ence of this setting.

Example 6-54: Using RootDir to specify location of style sheet.

<link rel="stylesheet" type="text/css" href="<%= EPiServer.Global.EPConfig.RootDir %>util/styles/

login.css">

Example 6-55: Using RootDir to specify location of image.

<img src="<%#EPiServer.Global.EPConfig.RootDir%>images/portal/img.gif" />

Example 6-56: Using RootDir to specify location of image.

link.InnerText = EPiServer.Global.EPConfig.HostUrl + EPiServer.Global.EPConfig.RootDir;
162

6. EPiServer Base Classes and Interfaces
EPiServer.ApplicationConfiguration.RootPage and StartPage

RootPage and StartPage are probably used even more than RootDir. They are
very important, as they provide shortcuts for the root page of the Web Page Tree
and the start page of the Web Page Tree, respectively. These two shortcuts are
used when listing pages in templated control, searching for information on Web
pages and in many other instances.

Figure 6-6: RootPage and StartPage for the example Web site Web Page Tree.

Figure 6-6 shows EPiServer.Global.EPConfig.RootPage and StartPage for the
example Web site. You can always assume that the RootPage will point to the up-
permost page in the Web Page Tree and that StartPage will point to the page
which is the default start page for the Web site.

EPiServer.ApplicationConfiguration.Exists

When you add configuration settings of your own to web.config, it’s probably a
good idea to include a call to Exists before reading its current value. In the un-
lucky event that the expected settings are in fact not present in web.config, Exists
will help you catch this information, as simply trying to read it will only result in
the default value being returned (see page 156 for default values for settings).

Example 6-57: Using EPiServer.EPConfig.Exists before reading a setting in web.config.

if (EPiServer.Global.EPConfig.Exists("EPnImportantValue")) {

ImportantValue = EPiServer.Global.EPConfig["EPnImportantValue"];

} else {

// Do something appropriate.

}

EPiServer.Global.EPConfig.RootPage

EPiServer.Global.EPConfig.StartPage
163

EPiServer.ApplicationConfiguration
EPiServer.ApplicationConfiguration.InitSmtpServer

See example 6-3 on page 129 for use of InitSmtpServer.

EPiServer.ApplicationConfiguration.IsEncrypted

Use IsEncrypted to test whether configuration setting has been encrypted. As
such, your code doesn’t have to take the possibility of encrypted values into ac-
count, as they are silently decrypted before your code tries to access them.
164

7
EPiServer Web Controls

EPiServer Web Controls are a number of ASP.NET Web Custom Controls col-
lected in the name space EPiServer.WebControls. ASP.NET Web Customs Con-
trols differ from ASP.NET Web User Controls in several ways. One is the fact
that Web Custom Controls are created solely in code; there’s no visual part (no
ascx file).

It’s a safe bet to state that there is a definite pattern to the control types found
in the name space EPiServer.WebControls. Very many of them deal with the
Web Page Tree that’s created in the EPiServer Edit mode and indeed make up
your Web site. Thus, you’ll find control classes that deal with creating menus
from part of or all of the Web Page Tree, as well as control classes used to create
various kinds of lists. Most of these controls are templated controls giving you
excellent control of their visual behaviour without the need for code in the code-
behind file. (ASP.NET templated controls are discussed below.)
Table 7-1: EPiServer ASP.NET Web Custom Controls

Class Description

Calendar Displays a template-based calendar where the calen-
dar events are pages in EPiServer.

CalendarEventTemplate-
Container

Template for a Calender Event.

CategoryTemplate-
Container

Used for template context at category level.

CategoryTree Renders a tree of categories from a given root cate-
gory.

ChangedPages Lists changed pages for the specified root page and all
child pages.

Clear Simple control to put an HTML Img tag with a trans-
parent GIF picture of the given dimensions.

Content Content in ContentFramework on a Web Form that
will populate controls to Region.
165

ContentFramework Provides support for visual inheritance. A skeleton
user control populated with Region controls, the con-
tents of which can be replaced by Content controls
contents in a ContentFramework on a Web Form.

ContentFramework-
Preview

Used to create a miniature model of a table structure.

ContentFramework-
Selector

Select framework to use when multiple frameworks
are defined

DayTemplateContainer Template for rendering information about a single
day.

DirectoryTemplate-
Container

Template class used by FileTree to display directories

DynamicCell A TableCell whose width can be changed.

DynamicResizeCell A TableCell that can be used to change width on
DynamicCells.

DynamicResizeRow A TableRow that can be used to change width on
DynamicRows.

DynamicRow A TableRow that can change height.

DynamicTable A Table that contains resizable Rows and Cells. These
can be personalized and saved by authenticated users.

ExplorerTree Displays a tree Explorer style.

FileTemplateContainer Template class used by FileTree to display files

FileTree Displays a file tree from the server.

FormFieldStatistic Helper class to keep track of information for a field.

FormPostings Gets a list of form postings as created by the Proper-
tyForm control

FormStatistics Used to create a statistics view of data posted with a
PropertyForm control

InputBase Base class for simple input types.

Table 7-1: EPiServer ASP.NET Web Custom Controls

Class Description
166

7. EPiServer Web Controls
InputCategoryTree Simple input type that displays a page selector.

InputEditorOptions Simple input type that displays editor options.

InputFrame Simple input type that displays a frame drop-down
list.

InputLanguage Simple input control used to select a language

InputPageDefinitionType Simple input type that displays a page definition type
drop-down list.

InputPageReference Simple input type that displays a page selector.

InputPassword Simple input control that allows a user to enter /
change passwords

InputSortOrder Simple input type that displays available sort orders.

InputTab Simple input type that displays a tabbed drop-down
list.

InputTimeSpan Simple input type that displays a time span.

MenuList Renders a menu list of top level items; useful for navi-
gations that contain a top level menu displaying sub-
trees as clicked.

NewsList Control for rendering news list with specialised tem-
plate for top level news.

PageControlBase Serves as a base class for all controls that generate any
type of PageData collection.

PageList Control for rendering page list; extends PageListData
with templates.

PageListData Base data control for accessing page list.

PageSearch WebControl that handles text searches against EPiS-
erver pages in the database and files indexed by
Microsoft Index Server.

PageTemplateContainer Used for template context at page level.

Table 7-1: EPiServer ASP.NET Web Custom Controls

Class Description
167

PageTree Control for rendering page trees; extends PageTree-
Data with templates.

PageTreeData Base data control for accessing page trees.

PortalFramework A Web control that renders a table structure contain-
ing IFrames. This control will load an XML file which
has to be located in the /Util/PortalFramework
folder.

PortalRegion A region in ContentFramework which can be popu-
lated with controls from a Content.

Property WebControl for rendering page properties.

PropertyCriteriaControl Holder of criteria information used by property
searching.

PropertyCriteriaControl-
Builder

Builds child controls of the type Property-
CriteriaControl.

PropertySearch Advanced property search in the complete database.

PropertyTemplateCon-
tainer

Used for template context at property level.

Region A region in ContentFramework that can be populated
with controls from a Content.

ResetDynamicTableButton A LinkButton that will remove any personalized val-
ues from all DynamicTables on the page.

SaveDynamicTableButton A LinkButton that will collect and save changed val-
ues to height and width for all DynamicTables on the
page.

SiteMap Displays a site map using templates and predefined
design options.

SubscriptionList Displays a list of subscription options.

Translate WebControl for language specific strings.

XmlNameValidator Checks that the validated controls value conforms
with naming rules for an XML identifier

Table 7-1: EPiServer ASP.NET Web Custom Controls

Class Description
168

7. EPiServer Web Controls
Inheritance Tree for EPiServer.WebControls

The inheritance tree for EPiServer.WebControls is quite extensive.

Figure 7-1: Inheritance Tree for EPiServer.WebControls name space, first three levels shown for all, more for
UserControlBase and ContentFramework.

All of the five top level classes inherit directly from System.Object. The inherit-
ance tree for EPiServer.WebControls is at most seven levels deep (including Sys-
tem.Object). Only the classes EPiServerValidator and XmlNameValidator have
a seven level deep inheritance chain: (not shown in figure 7-1).

ASP.NET Templated Controls

ASP.NET Templated Controls represent an elegant way to separate presentation
and data whilst keeping some connection between the two. In short, templated
controls offer HTML template tags with given names. Each control class can de-
fine their own names, which are handled by code in the control’s class.

For example, the built-in DataList server control (System.Web.UI.WebCon-
trols.DataList) defines these template names:

HeaderTemplate

FooterTemplate

DirectorySorter FileSorter FormFieldStatisticSystem.Web.UI.Control System.Web.UI.ControlBuilder

PageControlBase

FileTemplateContainer

DirectoryTemplateContainer

DayTemplateContainer

ContentFrameworkPreview.RegionContainer

ContentFrameworkPreview

Clear

CategoryTree

CategoryTemplateContainer

PropertyCriteriaControlBuilder

System.Web.UI.WebControls.WebControl

System.Web.UI.WebControls.PlaceHolder

PropertyTemplateContainer

PropertyCriteriaControl

PropertyCriteriaControlBuilder

PropertySearch

PageTreeData

PageListData

Calendar

PageTemplateContainer

CalendarEventTemplateContainer

Region

ContentFrameworkSelector

Content

Translate

Property

PortalFramework

InputBase

FormStatistics

FileTree

System.Web.UI.TemplateControl

System.Web.UI.UserControl

UserControlBase

ContentFramework
169

ASP.NET Templated Controls
ItemTemplate

AlternatingItemTemplate

SeparatorTemplate

SelectedItemTemplate

EditItemTemplate

Visual Studio .NET has support for the visual layout of templated controls, but
there’s no problem adding them directly to a Web Forms page. This example
comes from the help file:

Example 7-1: Using templated control DataList.

<asp:datalist ID="DataList1" runat="server">

<HeaderTemplate>

Employee List

</HeaderTemplate>

<ItemTemplate>

<asp:label id=Label1 runat="server" Text='<%# DataBinder.Eval(Container,

"DataItem.EmployeeName") %>' />

<asp:label id=Label2 runat="server" Text='<%# DataBinder.Eval(Container,

"DataItem.PhoneNumber") %>' />

<asp:Hyperlink id=Hyperlink1 runat="server"

Text='<%# DataBinder.Eval(Container, "DataItem.Email") %>'

NavigateURL='<%# DataBinder.Eval(Container, "DataItem.Link") %>' />

</ItemTemplate>

</asp:datalist>

Templated Controls Have an Imaginary Foreach Statement

It is possible to envisage a C# language foreach-statement enclosing parts of the
templated control. Rewriting the example above results in this:

Example 7-2: Pseudo code for templated control with an imaginary foreach statement.

<DataList control>

<!-- ItemTemplate -->

foreach (object DataItem in Container.DataItems) {
use DataBinder.Eval, Container and Container.DataItem

}
<!-- ItemTemplate -->

</DataList>

The Container Property

ASP.NET templated controls seem to have this mysterious property Container
which is used inside the control (you can see it in both example 7-1 and 7-2).
170

7. EPiServer Web Controls
‘Container’ is actually a code-generated property which refers to the individual
row/item in the outside control. As we are using DataList in the example, Con-
tainer is a DataListItem. Container only exists for autogenerated templates, and
you must implement it yourself in the ITemplate class. Generally, it’s the Nam-
ingContainer of the control you get sent to instantiate into. Luckily, this has been
done in all of EPiServer templated controls.

EPiServer Templated Controls

You can make good use of Templated Controls when developing solutions with
EPiServer. Most of the controls in EPiServer.WebControls are templated con-
trols. We’ll take a look at NewsList (EPiServer.WebControls.NewsList). This
control class defines these templates:

FirstNewsTemplate, template for the first news item

SecondNewsTemplate, template for the second news item

ThirdNewsTemplate, template for the third news item

FourthNewsTemplate, template for the fourth news item

NewsTemplate, default template for news items

In addition to the listed templates, there are also FooterTemplate and Header-
Template, with obvious uses.

An example of how to use this control in a Web Form or a User Control might
look like this:

Example 7-3: Using EPiServer templated control NewsList.

<EPiServer:Newslist ID=Newslistnew Pagelinkproperty="NewsContainer" runat="Server"

MaxCount='<%# GetNewsCount() %>'>

…

<NewsTemplate>

<tr>

<td class="DateListingText"><%# Container.CurrentPage["PageStartPublish"] %></td>

</tr>

<tr>

<td>

<a href="<%# Container.CurrentPage.LinkURL %>" class="StartPageHeading">

<%# Container.CurrentPage.PageName %>

<%# Container.CurrentPage["MainIntro"] %>

</td>

</tr>

<tr><td><EPiServer:Clear height="6" runat="server" /></td></tr>

</NewsTemplate>

</EPiServer:Newslist>
171

EPiServer.WebControls.Clear
The code in example 7-3 uses just NewsTemplate, meaning that all news items
will look the same in the list. Each news item will be displayed inside an HTML
table using three rows each. On the first row of the table, the contents of the
PageStartPublish property for the page are displayed. The second row will show
the contents of the MainIntro property and the third row is simply a spacer to
offset the news items vertically from each other. The use of classes in the Table
Data tag and the Span tag is linked to the Cascading Style Sheet used. Looking at
class DateListingText in the style sheet actually used, we find that it is set using a
different foreground colour (#606060) and font (7 pt, italic).

Figure 7-2: Actual news items presented using the templated control NewsList.

Comparing the code in 7-3 with the news items in figure 7-2 reveals a high degree
of correspondence between the two.

In the resulting HTML code, this news list will be distinguished by the first
news item being the only one which is displayed.

The Container Property in EPiServer Templated Controls

For the EPiServer templated controls in EPiServer.WebControls, the natural
naming container is hosted on a Web page most of the time. This means that the
Container property has a type of EPiServer.WebControls.PageTemplateCon-
tainer. For Calendar events, EPiServer.WebControls.Calendar, the Container
property type is EPiServer.WebControls.CalendarEventTemplateContainer.

EPiServer.WebControls.Clear

Not many EPiServer controls are designed to produce invisible results, but that’s
exactly what Clear does. Including an object of the Clear class in HTML produces
an invisible, transparent, area of specified dimensions using a transparent GIF
image. Its primary use is to avoid cluttering, to make the visual impression of the
Web page lighter.

Example 7-4: Clear control object using in HTML.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

…

<EPiServer:Clear Width="150" Height="10" runat="server" />
172

7. EPiServer Web Controls
The Clear control object included in example 7-4 would result in the final render-
ing of a transparent GIF image with the specified dimensions.

Example 7-5: HTML IMG tag equivalent to Clear control object.

The HTML IMG tag in example 7-5 and the EPiServer.WebControls.Clear con-
trol object in example 7-4 are equivalent.

If you don’t specify either or both of Height or Width, they will assume their
default values of ‘1’.

Example 7-6: Clear control object using in HTML.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

…

<EPiServer:Clear Height="10" runat="server" />

The Clear control object in example 7-11 produces a GIF image which is 10 pix-
els high and 1 pixel wide.

As can be seen in figure 7-1, Clear is a direct descendant of System.Web.UI
.Control; it only adds the Height and Width attributes.

The Visible attribute can be used to decide whether or not to actually render
an image.

Example 7-7: Using HasChildren attribute to control attribute Clear.Visible.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

…

<EPiServer:Clear Visible=<%# Container.HasChildren %> Width="7" Height="7" runat="server" />

EPiServer.WebControls.Content

Objects instantiated from the Content control class are always used in conjunc-
tion with Region control object (read more about the Region class on page 197,
onwards). Content objects define and name an area in the HTML landscape
which can be claimed by Region objects simply by stating the name of the perti-
nent area. There’s a clear distinction between Content and Region objects
though: Region objects are used in Framework Definition Files and Content ob-
jects are found in Page Template Files. Together, they form the building blocks
of the EPiServer Content Framework.
173

EPiServer.WebControls.Content
Two of the attributes in the Content class are important:

Using Content objects is easy:

Example 7-8: Using Content control in a Page Template File.

<%@ Page … Inherits="development.Default" %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Register TagPrefix="development" TagName="DefaultFramework … %>

…

<development:DefaultFramework id="DefaultFramework" runat="server">

<EPiServer:Content ID="NewsListing" Region="menuRegion" runat="server">

<table>

<tr>

<td>

<EPiServer:Newslist ID=Newslistnew Pagelinkproperty="NewsContainer"

runat="Server" MaxCount='<%# GetNewsCount() %>'>

<Newstemplate>

<tr><td><%# Container.CurrentPage["MainIntro"] %></td></tr>

</Newstemplate>

</EPiServer:Newslist>

</td>

</tr>

</table>

</EPiServer:Content>

…

</development:DefaultFramework>

Comparing the HTML code in example 7-8 with that in example 7-30 on page
page 197, we see that the Web User Control Menu.ascx that is used in example
7-30 is replaced by a very simple news listing in example 7-8.

Even if you’re working with nested Region controls, there’s no need to nest
the Content controls, as they will replace the proper Region control contents any-
way.

Remember, in the C# world many strings are case-sensitive. To improve port-
ability always treat them as such, no matter which programming language you are
using.

Table 7-2: The two important attributes in EPiServer.WebControls.Content.

Attribute Name Purpose

ID Unique ID for this object (this particular instance of Content)
[string].

Region Name of the Region whose contents will be replaced by the
contents of Content [string].
174

7. EPiServer Web Controls
EPiServer.WebControls.ContentFramework

The only purpose for EPiServer.WebControls.ContentFramework is to act as a
base class for classes in Framework Definition Files. Remember that Framework
Definition Files are ASP.NET Web User Controls (they’re just not used like that
in the EPiServer Content Framework), a point which is made even clearer by the
fact that ContentFramework inherits EPiServer.UserControlBase.

Example 7-9: Code-behind file from a Framework Definition File.

namespace development.Frameworks {

/// <summary>SimpleFramework is a simple Framework Definition

/// File.</summary>

public abstract class SimpleFramework : EPiServer.WebControls.ContentFramework {

protected EPiServer.WebControls.RegiontopRegion;

protected EPiServer.WebControls.Region leftColumn;

protected EPiServer.WebControls.Region centreRegion;

protected EPiServer.WebControls.Region footerRegion;

private void Page_Load(object sender, System.EventArgs e) {

// Put user code to initialize the page here

}

// Web Form Designer generated code

}

}

EPiServer.WebControls.ContentFrameworkSelector

Its name is a dead give-away: ContentFrameworkSelector enables you to adapt to
different Framework Definition Files, e.g. ordinary Framework Definition Files
and those which have portal functionality.

In the example Web site, the Page Template File Calendar.aspx uses Content-
FrameworkSelector to render either of two Web User Controls: Calendar.ascx or
PortalCalendar.ascx.

Example 7-10: ContentFrameworkSelector in Calendar.aspx.

<%@ Page language="c#" Codebehind="Calendar.aspx.cs" AutoEventWireup="false"

Inherits="development.Templates.calendar" %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Register TagPrefix="development" TagName="DefaultFramework"

Src="~/templates/Frameworks/DefaultFramework.ascx"%>

<%@ Register TagPrefix="development" TagName="PortalFramework"

Src="~/templates/Frameworks/PortalUnitFramework.ascx"%>
175

EPiServer.WebControls.ExplorerTree
<%@ Register TagPrefix="development" TagName="Calendar"

Src="~/templates/Units/Calendar.ascx"%>

<%@ Register TagPrefix="development" TagName="PortalCalendar"

Src="~/templates/Units/PortalCalendar.ascx"%>

<EPiServer:ContentFrameworkSelector runat="server" FrameworkKeyName="MyMode"

ID="FrameworkSelector" DefaultFramework="DefaultFramework">

<development:DefaultFramework id="DefaultFramework" runat="server">

<EPiServer:Content Region="mainRegion" ID="calendarContent" runat="server">

<development:Calendar id="Calendar" runat="server"></development:Calendar>

</EPiServer:Content>

<EPiServer:Content Region="rightColumnRegion" ID="emptyContent" runat="server" />

</development:DefaultFramework>

<development:PortalFramework id="portalmode" runat="server">

<EPiServer:Content Region="mainRegion" ID="calendarContent2" runat="server">

<development:PortalCalendar id="PortalCalendar" runat="server" />

</EPiServer:Content>

</development:PortalFramework>

</EPiServer:ContentFrameworkSelector>

When DefaultFramework is active, Calendar.aspx (watch out for the small differ-
ence between Web Form file Calendar.aspx and Web User Control file Calen-
dar.ascx) replaces the contents of Region ‘mainRegion’ with Web User Control
Calendar and also replaces the contents of Region ‘rightColumnRegion’ with
nothing (an empty Content control). On the other hand, when the Framework
PortalFramework is active, another Web User Control, PortalCalendar.ascx is
used.

EPiServer.WebControls.ExplorerTree

Windows Explorer is the visual ideal for ExplorerTree. It displays a tree, such as
the Web Page tree, just like the Windows Explorer (in its left pane). ExplorerTree
control objects are used in both Admin and Edit modes of EPiServer.

ExplorerTree is a direct descendant of EPiServer.WebControls.PageTreeDa-
ta (see figure 7-1).
176

7. EPiServer Web Controls
Figure 7-3 below shows the visual appearance of ExplorerTree. (You should
recognise the Web Page Tree from the example Web site; it’s the tree shown in
the left pane of Edit mode.)

Figure 7-3: Using ExplorerTree in EPiServer Edit mode.

As with most other EPiServer Web Custom Controls, ExplorerTree is very easy
to use. You only have to decide on a root page for the control. In the code-behind
file, you call the DataBind method for ExplorerTree which connects the control
with the EPiServer Web Page Tree.

Example 7-11: ExplorerTree in the code-behind file.

protected EPiServer.WebControls.ExplorerTreeExplorerTreeObj;

private void Page_Load(object sender, System.EventArgs e) {

if (! IsPostBack) {

ExplorerTreeObj.DataBind();

}

}

In the HTML file:

Example 7-12: HTML code needed for ExplorerTree.

<EPiServer:ExplorerTree EnableVisibleInMenu="False" ShowRootPage="True"

PageLink='<%# ((EPiServer.PageBase) Page).Configuration.StartPage %>' ShowIcons="True"

ClickScript="window.location.href = '{PageLinkURL}'" id="ExplorerTreeObj" runat="server"

/>

This results in the following rendition:

Figure 7-4: Using ExplorerTree control on a Web page.
177

EPiServer.WebControls.MenuList
Some of ExplorerTree’s attributes are more important than others.

EPiServer.WebControls.MenuList

Having a name like MenuList destines a class for handling menus. Of course, this
is what EPiServer.WebControls.MenuList does. MenuList is a direct descendant
of EPiServer.WebControls.PageTreeData and thus a sibling to EPiServer.Web-
Controls.ExplorerTree, EPiServer.WebControls.PageTree and EPiServer.Web-
Controls.SiteMap.

In the User Control TopMenu that ships with EPiServer, MenuList is used to
create a horizontal top-level menu.

TopMenu.ascx itself is used in the Framework Definition File DefaultFrame-
work outside of any Regions, meaning that all Page Template Files that use De-
faultFramework get TopMenu.ascx.

Figure 7-5: Result of using TopMenu.ascx in the example Web site.

TopMenu.ascx.cs is not terribly complex:

Table 7-3: ExplorerTree attributes.

Attribute Description

BranchUrl The URL that will be called to load child pages; default is
‘Util/ExplorerTreeBranch.aspx’.

ClickScript Set script code to be executed when the page name is
clicked.

EnableVisibleInMenu (Inherited from PageTreeData) If tree should check that
page should be ‘visible in menus’ to appear in tree.

ExpandAll (Inherited from PageTreeData) Expand all tree nodes.

ImageDirectory Path to image folder.

PageLink (Inherited from PageControlBase) The root page to read
data from

ShowIcons Show icons on system pages

ShowRootPage (Inherited from PageTreeData) If root page should be
loaded in the page list

ShowStatusIcons Show status icons, indicating access rights and published
status
178

7. EPiServer Web Controls
Example 7-13: TopMenu.ascx.

namespace development.Templates.Units {

/// <summary>TopMenu implements a horizontal top menu.

/// </summary>

public abstract class TopMenu : EPiServer.UserControlBase {

protected EPiServer.WebControls.PropertyProperty1;

protected EPiServer.WebControls.PropertyProperty2;

public EPiServer.WebControls.MenuListMenuListControl;

private void Page_Load(object sender, System.EventArgs e) {

if (! IsPostBack) {

MenuListControl.DataBind();

}

}

protected EPiServer.Core.PageReference MenuRoot {

get {

if (CurrentPage["MainMenuContainer"] != null) {

return (EPiServer.Core.PageReference) CurrentPage["MainMenuContainer"];

} else {

return Configuration.StartPage;

}

}

}

}

}

Nor is TopMenu.ascx very complex:

Example 7-14: TopMenu.ascx.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="TopMenu.ascx.cs"

Inherits="development.Templates.Units.TopMenu"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5"%>

<table width="100%" border="0" cellspacing="0" cellpadding="0"

xmlns:EPiServer="http://schemas.episerver.com/WebControls">

<tr valign="middle" align="center">

<EPiServer:MenuList runat="server" ID="MenuListControl" PageLink="<%#MenuRoot%>">

<ItemTemplate>

<td height="23">

<EPiServer:Property id="Property1" runat="server" PropertyName="PageLink"

CssClass="MenuHead"></EPiServer:Property>

</td>

</ItemTemplate>

<SelectedTemplate>
179

EPiServer.WebControls.NewsList
<td height="23">

<EPiServer:Property id="Property2" runat="server" PropertyName="PageLink"

CssClass="ActiveMenuHead"></EPiServer:Property>

</td>

</SelectedTemplate>

</EPiServer:MenuList>

</tr>

</table>

As you can see in example 7-14, all TopMenu.ascx does is create one row in an
assumed outer table containing one table data cell for every top level record.
Menu items are displayed according to the style sheet style MenuHead (which
among other settings specifies ‘text-transform : uppercase’). Selected menu items
take on the style ActiveMenuHead, which is the same as MenuHead except for
using a bold font. ‘font-weight:bold’.

EPiServer.WebControls.NewsList

The rationale for the NewsList class is to provide your Web site with an easy, yet
powerful way to display news items.

Again looking at the Mimic Web site, we see that a NewsList control object is
used on the start page.

Figure 7-6: Using NewsList on Mimic’s start page.

As NewsList is a templated control, the corresponding HTML code might seem
a bit large.

Example 7-15: HTML code to render NewsList control (from the Mimic start page).

<table cellspacing="0" cellpadding="0" border="0" width="100%">

<tr>

<td>

<EPiServer:Newslist ID=Newslistnew Pagelinkproperty="NewsContainer" runat="Server"

MaxCount='<%# GetNewsCount() %>'>

<HeaderTemplate>

<tr>

<td height="15" background="images/L_triangleBG.gif">
180

7. EPiServer Web Controls
<a class="ListHeading" href="<%#Container.CurrentPage.LinkURL%>">

<%# Container.CurrentPage.PageName.ToUpper() %>

</td>

</tr>

</HeaderTemplate>

<NewsTemplate>

<tr>

<td class="DateListingText">

<%# Container.CurrentPage["PageStartPublish"] %>

</td>

</tr>

<tr>

<td>

<a href="<%# Container.CurrentPage.LinkURL %>"

class="StartPageHeading">

<%# Container.CurrentPage.PageName %>

<%# Container.CurrentPage["MainIntro"] %>

</td>

</tr>

<tr>

<td><EPiServer:Clear height="6" runat="server" /></td>

</tr>

</NewsTemplate>

<FooterTemplate>

<tr>

<td bgcolor="#DEDEDE"><EPiServer:Clear height="1" runat="server" /></td>

</tr>

</FooterTemplate>

</EPiServer:Newslist>

</td>

</tr>

</table>

A discussion of the templates used in NewsList is presented on page 171 and fol-
lowing pages. Apart from these templates, the NewsList class only offers inher-
ited attributes, methods and events.
181

EPiServer.WebControls.PageList
EPiServer.WebControls.PageList

EPiServer is currently geared towards presentation information in a Web site
context, which makes it only natural that so many classes and controls deal with
handling Web pages. EPiServer.WebControls.PageList is one such page handling
control. It is used to present a list of the Web pages that form the Web site. It’s
an easy way to render a list of references (HTML Anchor tags) to all the Web pag-
es that belong to the site.

Figure 7-7: Example of PageList on Web page.

The PageList control object as seen in figure 7-7 was placed on a Web Form using
the HTML code, as seen in example 7-16.

Example 7-16: EPiServer.WebControls.PageList used on a Web Form.

<EPiServer:PageList PageLink="<%# ((EPiServer.PageBase) Page).Configuration.StartPage %>"

runat="server" ID="PageList1">

<ItemTemplate>

<tr>

<td>

<EPiServer:Property PropertyName="PageLink" runat="server" ID="Property2"/>

</td>

</tr>

</ItemTemplate>

</EPiServer:PageList>

PageList has three templates: HeaderTemplate, ItemTemplate and FooterTem-
plate.

The PageLink property of PageList is used to link the control object to the
proper place in the Web Page Tree. To link it to the current page, and its child
pages, you would use ‘PageLink=<%# CurrentPage.PageLink %>’ instead.
182

7. EPiServer Web Controls
EPiServer.WebControls.PageSearch

It is not searching for Pages but for information on Pages that PageSearch is used
for. It also cooperates with Microsoft Index Server and thus allows searching out-
side of the Web site proper.

Figure 7-8: Using PageSearch on a Web Form Search.aspx.

A good example of using PageSearch is the Search.aspx Web Form that is
shipped with EPiServer. Actually Search.aspx is simply a host for the Web User
Control Search.ascx. As always, the reason for using both a User Control and a
Web Form is the EPiServer Content Framework; the Web Form is an EPiServer
Page which is using a Framework Definition File.

This is what it looks like when searching the Mimic Web site for the word
‘mimic’.

Figure 7-9: Result presented when searching the Mimic Web site for the word ‘mimic’.

Looking at the screen dump in figure 7-9, you’d be quite right in assuming that
the Search Web Custom Control Class is a templated control.

All the action takes place in the Web User Control, Search.ascx, and its code-
behind file, Search.ascx.cs.

Example 7-17: Using EPiServer.WebControls.PageList in Web User Control Search.ascx.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="Search.ascx.cs"

Inherits="development.Templates.Units.Search"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>
183

EPiServer.WebControls.PageSearch
<table cellspacing="2" border="0" xmlns:EPiServer="http://schemas.episerver.com/WebControls">

…

<!-- Note: PageLink is the default start page for search, used if MainContainer is empty -->

<EPiServer:PageSearch

Runat="server"

ID="SearchResults"

SearchQuery='<%# SearchQuery.Text %>'

SearchFiles='<%# SearchFiles.Checked %>'

OnlyWholeWords='<%# OnlyWholeWords.Checked %>'

MainScope='<%# CurrentPage["MainScope"] %>'

MainCatalog='<%# CurrentPage["MainCatalog"] %>'

PageLink='<%# Configuration.StartPage %>'

PageLinkProperty="MainContainer"

>

<HeaderTemplate>

<tr>

<td colspan="2">

<EPiServer:Translate id="Translate6" runat="server"

Text="/templates/search/searchresult" CssClass="EP-tableHeading" />

</td>

</tr>

<tr>

<td colspan="2"> </td>

</tr>

<tr>

<td align="left" width="50">

<EPiServer:Translate id="Translate4" runat="server"

Text="/templates/search/rank" />

</td>

<td>

<EPiServer:Translate id="Translate5" runat="server"

Text="/templates/search/match" />

</td>

</tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td align="left" width="50">

<%# (int) Container.CurrentPage["PageRank"] / 10 %>%

</td>

<td align="left">
184

7. EPiServer Web Controls

<EPiServer:Property id="Property1" runat="server" PropertyName="PageLink" />

</td>

</tr>

<tr>

<td> </td>

<td><%# Container.PreviewText %></td>

</tr>

</ItemTemplate>

<FileTemplate>

<tr>

<td align="left" width="50">

<%# (int) Container.CurrentPage["PageRank"] / 10 %>%</td>

<td align="left">

<img src='<%# Container.CurrentPage["IconPath"] %>' >

<a href='<%# Container.CurrentPage["PageLinkURL"]%>'>

<%# Container.CurrentPage.PageName %>

</td>

</tr>

</FileTemplate>

<NoMatchesTemplate>

<tr>

<td colspan="2">

<EPiServer:Translate CssClass="EP-tableHeading"

Text="/templates/search/nomatches" runat="server" ID="Translate3" />

</td>

</tr>

</NoMatchesTemplate>

</EPiServer:PageSearch>

</table>

Of course, there are many opportunities for those who like more control. These
are some of the pertinent attributes in the PageList class:
Table 7-4: PageList attributes.

Attribute Name Description

FileTemplate Template for files

ItemTemplate (Inherited from PageList) The default template for pages

MainCatalog The index server catalog to search in.
185

EPiServer.WebControls.PageTree
EPiServer.WebControls.PageTree

EPiServer.WebControls.PageTree is a direct descendant of EPiServer.WebCon-
trols.PageTreeData (see figure 7-1). PageTree is a templated control; templates
are its only extension to PageTreeData. The names of the templates are self-ex-
planatory:

ExpandedItemTemplate

ExpandedTopTemplate

FooterTemplate

HeaderTemplate

ItemTemplate

SelectedExpandedItemTemplate

SelectedExpandedTopTemplate

SelectedItemTemplate

SelectedTopTemplate

TopTemplate

FooterTemplate and HeaderTemplate are simply used to define the areas imme-
diately above and below the PageTree control area.

MainScope The scope parameter for Index Server searches. The
default is deep traversal under the catalog root.

MaxCount (Inherited from PageListData) Restrict listing to a maxi-
mum number of pages.

NoMatchesTemplate The template for no search matches

OnlyWholeWords A flag to control if the search will match only whole words.
If False, the search will match all words that begin with the
words in the query (word* match).

SearchFiles A flag to indicate whether or not files should be included
in the search.

SearchQuery Search query string, i.e. whatever the user types.

Table 7-4: PageList attributes.

Attribute Name Description
186

7. EPiServer Web Controls
PageTree is often used in conjunction with EPiServer.MenuList, where it uses
the MenuList as its data source to create hierarchical menus.

One example of using PageTree, and Menu, is the DefaultFramework file
shipped with EPiServer. The menu displayed along the left side of the Web page
is created by using EPiServer.WebControls.PageTree and EPiServer.WebCon-
trols.MenuList in an ASP.NET User Control, Menu.ascx.

This is what the final result looks like:

Figure 7-10: Menu created by Web Control Menu.ascx using Custom Controls PageTree and MenuList. The
right-hand picture is the result of expanding the item News.

Looking into Menu.ascx

Example 7-18: Menu.ascx.cs

namespace development.Templates.Units {

/// <summary>Menu uses EPiServer.WebControls.MenuList

/// and EPiServer.WebControls.PageTree to implement a

/// vertical menu.</summary>

public abstract class Menu : EPiServer.UserControlBase {

protectedEPiServer.WebControls.PageTree PageTreeControl;

private EPiServer.WebControls.MenuList _menuListControl;

private void Page_Load(object sender, System.EventArgs e) {

if (MenuListControl != null) {

PageTreeControl.DataSource = MenuListControl;

}

if (! IsPostBack) {

PageTreeControl.DataBind();

}

}

public EPiServer.WebControls.MenuList MenuListControl {

set { _menuListControl = value; }

get { return (EPiServer.WebControls.MenuList) _menuListControl; }

}

…

}

}

The HTML code looks like this (just browse it, a more readable version follows):
187

EPiServer.WebControls.PageTree
Example 7-19: Menu.ascx.

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="Menu.ascx.cs"

Inherits="development.Templates.Units.Menu"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<table cellpadding="0" cellspacing="0" border="0" width="160"

xmlns:EPiServer="http://schemas.episerver.com/WebControls">

<EPiServer:PageTree runat="server" id="PageTreeControl">

<HeaderTemplate>

<tr>

<td valign="middle" height="15" colspan="6">

<a class="ListHeading" href="<%# Container.CurrentPage.LinkURL %>">

<%#Container.CurrentPage.PageName.ToUpper()%>

</td>

</tr>

<tr>

<td colspan="6"><EPiServer:Clear height="5" runat="server" /></td>

</tr>

<tr>

<td width="12" height="1"></td>

<td width="12" height="1"></td>

<td width="12" height="1"></td>

<td width="12" height="1"></td>

<td width="12" height="1"></td>

<td width="100" height="1"></td>

</tr>

</HeaderTemplate>

<ExpandedItemTemplate>

<tr>

<td height="20" colspan='<%#Container.CurrentPage.Indent%>' align="right">

<asp:Image Visible="<%# Container.HasChildren %>"

ImageUrl="~/images/openMenuArrow.gif" Width="7" Height="7"

AlternateText="" runat="server" />

<EPiServer:Clear Visible="<%# ! Container.HasChildren %>" Width="7" Height="7"

runat="server" />

</td>

<td height="20" colspan='<%#6-Container.CurrentPage.Indent%>'>

<EPiServer:Property CssClass="MenuLink" runat="server"

PropertyName="PageLink" id="Property1" name="Property1" />

</td>

</tr>
188

7. EPiServer Web Controls
<tr>

<td bgcolor="#dedede" colspan="6"><EPiServer:Clear runat="server" /></td>

</tr>

</ExpandedItemTemplate>

<ItemTemplate>

<tr>

<td height="20" colspan="<%#Container.CurrentPage.Indent%>" align="right">

<asp:Image Visible="<%# Container.HasChildren %>"

ImageUrl="~/images/closedMenuArrow.gif" Width="7" Height="7"

AlternateText="" runat="server" />

<EPiServer:Clear Visible="<%# ! Container.HasChildren %>" Width="7"

Height="7" runat="server" />

</td>

<td height="20"

colspan="<%#6-Container.CurrentPage.Indent%>">

<EPiServer:Property CssClass="MenuLink" runat="server"

PropertyName="PageLink" id="Property2" name="Property2" />

</td>

</tr>

<tr>

<td bgcolor="#dedede" colspan="6"><EPiServer:Clear runat="server" /></td>

</tr>

</ItemTemplate>

<SelectedItemTemplate>

<tr bgcolor="#dedede">

<td height="20" colspan="<%#Container.CurrentPage.Indent%>"

align="right">

<asp:Image Visible="<%# Container.HasChildren %>"

ImageUrl="~/images/openMenuArrow.gif" Width="7" Height="7"

AlternateText="" runat="server" />

<EPiServer:Clear Visible="<%# ! Container.HasChildren %>" Width="7"

Height="7" runat="server" />

</td>

<td height="20" colspan="<%#6-Container.CurrentPage.Indent%>">

<EPiServer:Property CssClass="MenuLink" runat="server"

PropertyName="PageLink" ID="Property3" NAME="Property3" />

</td>

</tr>

<tr>

<td bgcolor="#dedede" colspan="6"><EPiServer:Clear runat="server" /></td>

</tr>
189

EPiServer.WebControls.PageTree
</SelectedItemTemplate>

</EPiServer:PageTree>

</table>

Now, that’s a mouthful. Let’s simplify it:

Example 7-20: Menu.ascx in much simplified form.

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="Menu.ascx.cs"

Inherits="development.Templates.Units.Menu"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<table cellpadding="0" cellspacing="0" border="0" width="160"

xmlns:EPiServer="http://schemas.episerver.com/WebControls">

<EPiServer:PageTree runat="server" id="PageTreeControl">

<HeaderTemplate>

<tr>

<td>

<a href="<%# Container.CurrentPage.LinkURL %>">

<%# Container.CurrentPage.PageName.ToUpper() %>

</td>

</tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td>

<a href="<%# Container.CurrentPage.LinkURL %>">

<%# Container.CurrentPage.PageName %>

</td>

</tr>

</ItemTemplate>

</EPiServer:PageTree>

</table>

You probably agree that the latter is much easier to read. It still retains the basic
functionality of the code in example 7-19.

Figure 7-11: Menu created by the simplified Web Control Menu.ascx using Custom Controls PageTree and
MenuList. The right-hand picture is the result of expanding the item News.
190

7. EPiServer Web Controls
Underlining is controlled by the style sheet, episerver.css, which by default under-
lines all links (anchor tags).

The original Menu.ascx (see example 7-19) uses four out of PageTree’s ten
templates: HeaderTemplate, to create a header for the menu; ItemTemplate, for
all ordinary items whether they are mother or children items; ExpandedItem-
Template for selected items that are expanded, again whether or not they have
any children items; and SelectedItemTemplate for the currently selected item.

There are several examples of elegant coding in example 7-19. One is the use
of EPiServer.WebControls.Property instead of the HTML anchor tag.

Example 7-21: Using EPiServer.WebControls.Property instead of HTML anchor tag.

<EPiServer:Property runat="server" PropertyName="PageLink" ID="Property1" />

<!-- Equivalent to: -->

<a href="<%# Container.CurrentPage.LinkURL %>"><%# Container.CurrentPage.PageName %>

EPiServer.WebControls.Property

Property is probably the most frequently used of all control types in the EPiServ-
er.WebControls name space. It provides access to all page properties, whether
they are built-in, changes automatically or added in EPiServer Admin mode. The
class name, ‘Property’, must be understood in an historical context. Had EPi-
Server been written in and for an object-oriented environment, such as Microsoft
.NET, today, this class would most likely have been called ‘Value’ or perhaps ‘Set-
ting’. It will be interesting to see whether a name change is feasible for future ver-
sions of EPiServer.
Table 7-5: Attributes for EPiServer.WebControls.Property.

Attribute Name Description

DisplayMissingMessage Hide or show error message when property is missing

Editable Determines whether the property is editable with DOPE

EditMode Determines whether the property should render its edit
mode

InnerProperty Set or get the inner property used by this control

PageLink The root page to read data from, if different from current

PageLinkProperty The property that contains the root page to read data
from, if different from current

PageSource Returns the IPageSource implementation that this prop-
erty control uses to read page data
191

EPiServer.WebControls.Property
Property objects, like Content and Region objects, are most often found in
HTML part of Web Forms and User Controls, but they also are used to a great
extent in code-behind files.

Properties on pages are collected in an EPiServer.Core.PropertyDataCollec-
tion collection called Property, provided that the template used implements IPag-
eSource (see page 153).

Property objects used in HTML only have to include the name of the Prop-
erty:

Example 7-22: Using a Property object to display contents of Property MainBodyHeading.

<EPiServer:Property PropertyName="MainBodyHeading"

DisplayMissingMessage="false" class="ListHeading" runat="server" />

Example 7-23: Display the name of the page.

<EPiServer:Property propertyname="PageName" runat="server" />

For the Property control to be able to read the properties from the page, it needs
to be hosted on a Web form or a control that implements the IPageSource inter-
face. The control will iterate through the control hierarchy looking for this inter-
face, and when it finds one, it will use the CurrentPage property to read the
information about the specific built-in or custom property.

If you put a Property control inside a templated control like the PageList con-
trol which implements IPageSource, the Property control will use the Current-
Page property of the template control instead. The PageList then points the
Property control to the current PageData object in its internal PageDataCollec-
tion. This is why the two following examples will print the same:

Example 7-24: Using Property inside a templated control.

<EPiServer:PageList PageLink=<%# CurrentPage.Configuration.StartPage %> runat="server">

<ItemTemplate>

<EPiServer:Property PropertyName="PageName" runat="server"/>

</ItemTemplate>

</EPiServer:PageList>

Example 7-25: Using Container inside a templated control.

<EPiServer:PageList PageLink=<%# CurrentPage.Configuration.StartPage %> runat="server">

PropertyName The name of the property to load automatically

PropertyValue The value of the loaded property

Table 7-5: Attributes for EPiServer.WebControls.Property.

Attribute Name Description
192

7. EPiServer Web Controls
<ItemTemplate>

<%# Container.CurrentPage.PageName %>

</ItemTemplate>

</episerver:PageList>

The Property control will also give you DOPE (Direct On Page Editing) support
if the underlying template page supports it (meaning any Web page that inherits
directly or indirectly from TemplatePage). If you do not want DOPE support,
you can either inherit from SimplePage or set the Editable attribute to false, like
this:

Example 7-26: Switching off DOPE support for an EPiServer Property.

<EPiServer:Property PropertyName="PageName" runat="server" Editable='false' />

Note that DOPE support will only be available for properties on the current
page, not properties rendered inside a PageList or any other templated control.

EPiServer.WebControls.PropertyCriteriaControl

The HTML code in example 7-27 uses a PropertySearch object as data source for
a PageList object. Enclosed in the PropertySearch object are two PropertyCrite-
riaControl objects, specifying that the search proper concerns the Property Pa-
geName and that the contents of the PageName properties should start with one
of the letters ‘A’, ‘a’, ‘B’ or ‘b’. (Compare this with example 7-28, which puts the
logic in the code-behind file.)

Example 7-27: Using PropertySearch, PropertyCriteriaControl and PageList to produce a list of pages meeting
certain criteria.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

…

<EPiServer:PropertySearch PageLink=<%# Configuration.StartPage %> runat="server"

ID="PropSearch" >

<EPiServer:PropertyCriteriaControl Name="PageName" Value="a" Type="String"

StringCondition="StartsWith" />

<EPiServer:PropertyCriteriaControl Name="PageName" Value="b" Type="String"

StringCondition="StartsWith" />

</EPiServer:PropertySearch>

<EPiServer:PageList SortBy="PageName" DataSource="<%# PropSearch %>" runat="server"

ID="PL">

<ItemTemplate>

<tr>

<td><EPiServer:Property PropertyName="PageName" runat="server" ID="Prop3" /></td>

</tr>

</ItemTemplate>
193

EPiServer.WebControls.PropertySearch
</EPiServer:PageList>

EPiServer.WebControls.PropertySearch

Having a lot of Web Pages in the Web Page and perhaps a lot of information on
those pages makes is absolutely necessary to be able to search these pages using
almost any attributes and any number of search criteria. PropertySearch is used
when the capabilities of PageSearch (see page 183) just aren’t enough. In addi-
tion, PropertySearch is not limited to searching for, or in, Web Pages in the Web
Page Tree; it searches all of page database, in the database table tblProperty (see
page 315). So pages such as user registrations and other kinds are part of the
search. (For an illustration, open the example Web site and look at its site map,
which shows only pages in the Web Page Tree. Then open Templates and select
‘Alphabetical table of contents’. In the latter case, PropertySearch is used and
thus all pages are returned, not just those in the Web Page Tree.)

Central to PropertySearch is its attribute Criterias (this is the only attribute
which is not inherited). Criterias is of the type EPiServer.PropertyCriteriaCollec-
tion, i.e. a collection of EPiServer.PropertyCriteria. Proper use of the Property-
Criteria objects in Criterias is key to successfully using PropertySearch.

EPiServer.PropertyCriteria

PropertyCriteria inherits from System.Object and extends the mother class only
by adding seven attributes. It is used for two different kinds of searches: string
and non-string searches. When used for string searches, the search condition at-
tribute StringCondition is employed whilst for non-string searches Condition is
the attribute of choice.
Table 7-6: PropertyCriteria attributes.

Attribute Name Description

Condition The type of comparison condition. EPiServer.Filters.Compare-
Condition, specifies Equal, NotEqual, GreaterThan and
LessThan.

IsNull Test for value set to null. Boolean.

Name Name of property. String.

Required Determines whether this criterion is required for a match.
Boolean. Default is false, meaning that this criterion is logically
Or:ed with other criteria.

StringCondition Comparison of strings when Equal is used. Type is EPiS-
erver.Filters.StringCompareMethod (Identical, StartsWith,
EndsWith and Contained). Comparison is case insensitive.
194

7. EPiServer Web Controls
Using PropertySearch

Example 7-28: Using PropertyCriteria when searching for Web Pages by their name (from
templates\Units\AlphanumericListing.ascx.cs).

…

protected EPiServer.WebControls.PropertySearchPropertySearchControl;

…

protected void ChangeLetters(object sender, System.EventArgs e) {

…

AddLetter("A");

AddLetter("B");

AddLetter("C");

AddLetter("D");

AddLetter("E");

AddLetter("F");

…
DataBind();

}

private void AddLetter(string letter) {

EPiServer.PropertyCriteria criterion = new EPiServer.PropertyCriteria();

criterion.StringCondition = EPiServer.Filters.StringCompareMethod.StartsWith;

criterion.Type = EPiServer.Core.PropertyDataType.String;

criterion.Value = letter;

criterion.Name = "PageName";

PropertySearchControl.Criterias.Add(criterion);

}

The code in example 7-28 is extracted from the code-behind file of Web User
Control AlphanumericListing, AlphanumericListing.ascx.cs.

Taking a look at the function AddLetter, we see that it’s building up for a
string search; criterion.StringCondition is given a value rather than criterion.Con-
dition. Moreover, we’re using a string value as a search criterion, ‘criterion.Type
= EPiServer.Core.PropertyDataType.String’; the string value proper is set to the
formal argument ‘letter’ passed to AddLetter. The EPiServer Property which

Type Type of criterion, one of EPiServer.Core.PropertyDataType
enumeration.

Value Value of criterion. String. If you’re using Microsoft SQL Server,
its wild cards ‘%’ and ‘?’ may be used.

Table 7-6: PropertyCriteria attributes.

Attribute Name Description
195

EPiServer.WebControls.PropertySearch
we’ll be comparing criterion.Value against is PageName. In other words, the
search is performed against every Web Page comparing EPiServer Property Pa-
geName to the criteria in Criterias.

In this particular instance, you can also see that AddLetter is called multiple
times. As criterion.Required is not altered, this means that PageName is matched
against any of ‘A’ through ‘F’. Setting criterion.Required to true for this kind of
comparison would be non-sensical (criterion.StringCondition is set to EPiServ-
er.Filters.StringCompareMethod.StartsWith), but for other kinds it is essential,
e.g. when searching for Properties which should contain more than one letter.

The HTML code in AlphanumericListing.ascx is quite simple.

Example 7-29: AlphanumericListing.ascx.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="AlphanumericListing.ascx.cs"

Inherits="development.Templates.Units.AlphanumericListing"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5"%>

<table border="0" height="90%" cellpadding="0" cellspacing="0"

xmlns:EPiServer="http://schemas.episerver.com/WebControls">

<tr>

<td valign="top">

<table bgcolor="#cccccc" width="400" cellpadding="2" cellspacing="1">

<tr>

<td bgcolor="#cccccc" Class="Heading2">

[<asp:LinkButton ID="Alphanumeric1" Runat="server"

OnClick="ChangeLetters" CssClass="Heading2">a-f</asp:LinkButton>]

[<asp:LinkButton ID="Alphanumeric2" Runat="server"

OnClick="ChangeLetters" CssClass="Heading2">g-l</asp:LinkButton>]

[<asp:LinkButton ID="Alphanumeric3" Runat="server"

OnClick="ChangeLetters" CssClass="Heading2">m-r</asp:LinkButton>]

[<asp:LinkButton ID="Alphanumeric4" Runat="server"

OnClick="ChangeLetters" CssClass="Heading2">s-z</asp:LinkButton>]

</td>

</tr>

<EPiServer:PropertySearch PageLink="<%# EPiServer.Global.EPConfig.StartPage %>"

runat="server" ID="PropertySearchControl" />

<EPiServer:PageList SortBy="PageName"

DataSource="<%# PropertySearchControl %>"runat="server"

ID="PageListControl">

<ItemTemplate>

<tr>

<td bgColor="#ffffff">

<EPiServer:Property id="Property1" runat="server"

PropertyName="PageLink" />
196

7. EPiServer Web Controls
</td>

</tr>

</ItemTemplate>

</EPiServer:PageList>

</table>

</td>

</tr>

</table>

EPiServer.WebControls.Region

Framework Definition Files is the only type of place where you’ll find EPiServ-
er.WebControls.Region objects. Region objects are used to define areas in a
Framework Definition File which may have their contents exchanged by Content
object in Page Template Files (yes, we’re talking about the EPiServer Content
Framework).

As such, Region objects are never instantiated in code-behind files, they sim-
ply have no purpose there.

Example 7-30: Use of EPiServer.WebControls.Region in a Framework Definition File.

<%@ Control Language="c#" … %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Register TagPrefix="development" TagName="LeftMenu" Src="~/templates/Units/Menu.ascx"%>

…
<EPiServer:Region id="menuRegion" runat="server">

<development:LeftMenu id="LeftMenu" runat="server"/>

</EPiServer:Region>

Region control objects may be nested to any depth you need.

Example 7-31: Nested Region control objects.

<%@ Control Language="c#" … %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Register TagPrefix="development" TagName="LeftMenu" Src="~/templates/Units/Menu.ascx"%>

…
<EPiServer:Region id="fullRegion" runat="server">

<table>

<tr>

<td>

<EPiServer:Region id="menuRegion" runat="server">

<development:LeftMenu id="LeftMenu" runat="server" />

197

EPiServer.WebControls.SiteMap
</EPiServer:Region>

</td>

…

</tr>

</table>

</EPiServer:Region>

The only important attribute for Region controls is ID, the unique identifier.
Only by using the proper ID string can a Content control exchange its own con-
tents for that of a pre-defined Region.

EPiServer.WebControls.SiteMap

It’s not surprising that EPiServer ships with such an easy way to produce a site
map as using SiteMap control object.

SiteMap is used in just two ASP.NET objects in the example Web site: the
Page Template File SiteMap.aspx and the Web User Control SiteMap.ascx (in the
template\Units folder).

The Page Template File SiteMap.aspx is not very exciting; its code-behind file
is all but empty. The HTML contents look like this:

Example 7-32: HTML contents of Page Template File SiteMap.aspx.

<%@ Page language="c#" Codebehind="SiteMap.aspx.cs" AutoEventWireup="false"

Inherits="development.Templates.SiteMap" %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<%@ Register TagPrefix="development" TagName="DefaultFramework"

Src="~/templates/Frameworks/DefaultFramework.ascx"%>

<%@ Register TagPrefix="development" TagName="Sitemap"

Src="~/templates/Units/Sitemap.ascx"%>

<development:DefaultFramework ID="defaultframework" runat="server">

<EPiServer:Content Region="fullRegion" ID="SiteMapContent" runat="server">

<development:Sitemap id="Sitemap" runat="server"></development:Sitemap>

</EPiServer:Content>

</development:DefaultFramework>

As can be seen in example 7-32, the Page Template File SiteMap.aspx replaces
everything in the Region ‘fullRegion’ with the Web User Control SiteMap.ascx.

EPiServer.WebControls.Translate

In order to make your EPiServer solution as portable as possible, you should use
the Translate class. With Translate and a set of language files, you can furnish
groups of users with an EPiServer solution which literally speaks their own lan-
guage.
198

7. EPiServer Web Controls
Translate is a direct descendant of System.Web.UI.WebControls.WebControl
(see figure 7-1).

There are only three attributes that Translate implements itself:

Use the Translate control to translate your own strings or one of the built-in
strings in the /lang folder of your site. The text displayed will vary according to
the current user’s chosen language (if chosen) or the system default language.

The control uses the LanguageManager to translate the text. You can access
the LanguageManager through code using the Global.EPLang static property.

Example 7-33: Using EPiServer.Translate in HTML part of a form or control.

<EPiServer:Translate text="/button/search" runat="server"/>

This will show the translated value for the /button/search language resource.

Translating ASP Intrinsic controls

Translate can also be used to translate ASP.NET control objects such as the La-
bel Web control. In the PreRender event, EPiServer will search the Controls hi-
erarchy for controls with a ‘Translate’ attribute (case insensitive) and
subsequently translate the textual value of the control.

Example 7-34: Using Translate attribute in an ASP.NET control.

<asp:button id="QuicksearchButton" runat="server" translate="/button/search" />

Automatic translation can be turned off by setting the AutomaticTranslation
property in your template to false.

Table 7-7: Attributes implemented by EPiServer.Translate.

Attribute Name Description

LocalizedText Used to access the text to be translated

StringFormatObjects Set object references if the localized text is a format string
with ‘{n}’ style instructions

Text The property that holds the text to be translated.
199

EPiServer.WebControls.Translate
200

8
Custom Property Data Types and Filters

Customized Property Data Types (Customized Value Types)
Customized property data types (again Values or Settings would be a more ap-
propriate name for EPiServer Properties) enable developers to build re-usable el-
ements. They have been added to EPiServer 4 in order to make it easy to custom-
build re-usable input fields. These input fields can be shared between any number
of Web projects.

The customized properties are viewable in three modes:

View Mode (Default)

Direct On-Page Editing Mode, DOPE

Edit Mode

On installation, EPiServer 4 contains fifteen standard property data types. These
are all customizable using sub-classing.

Table 8-1: Standard property data types.

Property Data Type Name Space Implementing Class

Base class EPiServer.Core PropertyData

String (<= 255) EPiServer.Core PropertyString

Selected/Not selected EPiServer.Core PropertyBoolean

Category Selection EPiServer.Core PropertyCategory

Date–Time EPiServer.Core PropertyDate

Floating Point
Number

EPiServer.Core PropertyFloatNumber

Form EPiServer.Core PropertyForm

Frame EPiServer.SpecializedProperties PropertyFrame

Language EPiServer.SpecializedProperties PropertyLanguage
201

Customized Property Data Types (Customized Value Types)
As with any sub-classing in C#, sub-classing of standard properties can be
achieved by inheriting from either the base class or an existing sub-class. This way
the developer decides herself how much of the implementation should be done
in the customized property class and how much is deferred to the mother class.

Class EPiServer.PlugIn.PageDefinitionTypePlugIn

The PageDefinitionTypePlugIn attribute class signals to EPiServer that the class
carrying the attribute extends some ‘page definition type’, such as new Property
data types and registers them accordingly in EPiServer Admin mode. PageDefi-
nitionTypePlugIn inherits EPiServer.PlugIn.PlugInAttribute (see figure 13-3 on
page 269 and description on page 271), but doesn’t extend it as regards proper-
ties. Most frequently used of the PageDefinitionTypePlugIn properties is Dis-
playName, with which you specify the new type’s name as viewed in EPiServer
Admin mode.

Creating New Property Data Type BackgroundColourType

In this example, we’ll make a new customized property BackgroundColorType by
extending the standard property PropertyString. The visual interface of Back-
groundColorType is a drop-down menu allowing the user to chose between col-
ours. The colour selected will then be used as the background colour for parts of
the Web site (or even all of it). To accomplish the latter, the new customized
property will be added as a dynamic property.

The new customized property BackgroundColorType will inherit from Prop-
ertyString and include a new implementation of CreateChildControls, overriding
the implementation in the base class.

1. Open your project in Visual Studio .NET, add a new class file (Add Class)
and call it BackgroundColourType.cs

2. Add code according to the listing below:

Long String (> 255) EPiServer.Core PropertyLongString

Integer EPiServer.Core PropertyNumber

Page Reference EPiServer.Core PropertyPageReference

Page Type EPiServer.Core PropertyPageType

Sort Order EPiServer.SpecializedProperties PropertySortOrder

URL EPiServer.SpecializedProperties PropertyUrl

WeekDay EPiServer.SpecializedProperties PropertyWeekDay

Table 8-1: Standard property data types.

Property Data Type Name Space Implementing Class
202

8. Custom Property Data Types and Filters
Example 8-1: Code for class BackgroundColourType class inheriting from PropertyString.

namespace development {
/// <summary>BackgroundColourType implements a background colour
/// type by sub-classing EPiServer.Core.PropertyString. User is presented
/// with colour names, storage is a hexadecimal string.</summary>

[EPiServer.PlugIn.PageDefinitionTypePlugIn(DisplayName = "BgColour")]
public class BackgroundColourType : EPiServer.Core.PropertyString {

public override void CreateChildControls(string RenderType, System.Web.UI.Control Container){
switch (RenderType.ToLower()) {

case "edit":
System.Web.UI.WebControls.DropDownList BgColDropDownList =

new System.Web.UI.WebControls.DropDownList();
BgColDropDownList.ID = Name;
CopyWebAttributes(Container, BgColDropDownList);
BgColDropDownList.Items.Add(

new System.Web.UI.WebControls.ListItem("Blue", "#3333cc"));
BgColDropDownList.Items.Add(

new System.Web.UI.WebControls.ListItem("Red", "#cc0000"));
BgColDropDownList.Items.Add(

new System.Web.UI.WebControls.ListItem("White", "#ffffff"));
if (base.Value != null) {

BgColDropDownList.SelectedIndex = 0;// Default.
switch (((string) base.Value).ToLower()) {

case "#cc0000" :
BgColDropDownList.SelectedIndex = 1;
break;

case "#ffffff" :
BgColDropDownList.SelectedIndex = 2;
break;

}
}
CopyWebAttributes(Container, BgColDropDownList);
Container.Controls.Add(BgColDropDownList);
Container.Controls.Add(CreateParseValidator(BgColDropDownList));
break;

default:
base.CreateChildControls(RenderType, Container);
break;

}
}

}
}

The class in example 8-1 inherits from EPiServer.Core.PropertyString and over-
rides the function CreateChildControls. In this function, base.Value (i.e. Proper-
tyString.Value) is checked and if such a value exists it is used to set the
SelectedIndex of the DropDownList used to input values (so the Editor won’t
think the setting wasn’t stored).

The rationale for extending PropertyString, as opposed to another intrinsic
property class, is that colours in HTML are often encoded as six hex numbers and
in string format.
203

Customized Property Data Types (Customized Value Types)
In this particular example, two new over-ridden function CreateChildCon-
trols are all that’s needed. The first argument, string, for CreateChildControls,
RenderType, contains the current view mode according to this list:

edit

dope

default

As the envisaged use for this property data type is confined to settings under Ed-
itor control, only the ‘edit’ case is handled. For any other case, the mother class
function, ‘base.CreateChildControls’, is called instead.

Make the New Property Type Part of the System

Adding the class attribute PageDefinitionTypePlugIn makes the registration of
the new property type automatic. In its absence, putting the new EPiServer Prop-
erty to work is a two-stage process: first compile the class, then enter the Web
site’s EPiServer Admin mode to create the new custom property type (section
Page types, select Edit custom property types). Fill in the fields according to the
table.

Having created the new custom property type, you can assign properties using
this type to EPiServer Page Types.

In Edit mode, EPiServer takes care of positioning the property on the page.

Figure 8-1: Handling a property of the type BackgroundColourType in EPiServer Edit mode.

Table 8-2: Information when creating new property type.

Field Name Comment

Base type In this case String, in general the base type on which the new
type is based.

Name Your choice entirely. Choose an Editor-friendly name.

Class name Fully qualified class name, in this case ‘development.Back-
groundColourType’

Assembly name Probably ‘EPiServerSample’, but you might have changed it.
It’s the name of the ASP.NET project in Visual Studio .NET.
Do not add any file extension: that’s handled by the run-time
system at load-time.
204

8. Custom Property Data Types and Filters
Creating New Restricted Property Data Type MailToUrl

Example 8-2: Code for class MailToUrl class inheriting EPiServer.Core.PropertyString.

namespace development {

/// <summary>MailToUrl is a restricted string data type

/// to hold only 'mailto:' URLs.</summary>

[EPiServer.PlugIn.PageDefinitionTypePlugIn(DisplayName = "MailTo-Url")]

public class MailToUrl : EPiServer.Core.PropertyString {

System.Web.UI.WebControls.TextBox MailToUrlTextBox = null;

public override void CreateChildControls(string RenderType, System.Web.UI.Control Container){

switch (RenderType.ToLower()) {

case "edit":

if (MailToUrlTextBox == null) {

MailToUrlTextBox = new System.Web.UI.WebControls.TextBox();

}

if (base.Value != null) {

MailToUrlTextBox.Text = (string) base.Value;

}

MailToUrlTextBox.ID = Name;

CopyWebAttributes(Container, MailToUrlTextBox);

Container.Controls.Add(MailToUrlTextBox);

Container.Controls.Add(CreateCustomParseValidator(

new System.Web.UI.WebControls.ServerValidateEventHandler(

MailToUrlValidator)));

break;

default:

base.CreateChildControls(RenderType, Container);

break;

}

}

private void MailToUrlValidator(object Source,

System.Web.UI.WebControls.ServerValidateEventArgs ValArgs) {

string MailToRegExp = "^['_a-z0-9-]+(\\.['_a-z0-9-]+)";

MailToRegExp += "*@[a-z0-9-]+(\\.[a-z0-9-]+)*\\.(([a-z]{2,3})";

MailToRegExp += "|(aero|coop|info|museum|name))$";

ValArgs.IsValid = new System.Text.RegularExpressions.Regex(MailToRegExp).Match(

MailToUrlTextBox.Text.Trim()).Success;

if (ValArgs.IsValid) {

base.Value = MailToUrlTextBox.Text.Trim();

} else {

((System.Web.UI.IValidator) Source).ErrorMessage =

"Must be a well-formed e-mail address, e.g. editor01@episerver.com.";
205

Customized Property Data Types (Customized Value Types)
}

}

}

}

Example 8-2 represents a class of property data types which are slightly more
complex than BackgroundColourType, as it includes restrictions on entries en-
forced in code. The idea behind MailToUrl is that entries of this type should be
valid ‘mailto:’ URLs. The regular expression using the function MailToUrlValida-
tor forms a template for a valid e-mail address. As it’s a bit on the strict side, only
top-level domains either two or three letters long or one of ‘aero’, ‘coop’, ‘info’,
‘museem’ or ‘name’ is allowed. (It was found on the Internet and seems to be
used by many people.)

In order to be able to perform the tests, we introduce a new control, CustVal,
of the type System.Web.UI.WebControls.ServerValidateEventHandler. This is
linked to the function MailToUrlValidator.

Example 8-3: CustomValidatorControl CustVal introduced (compare example 8-2).
…

Container.Controls.Add(MailToUrlTextBox);

System.Web.UI.WebControls.CustomValidator CustVal =

new System.Web.UI.WebControls.CustomValidator();

CustVal.ControlToValidate = MailToUrlTextBox.ID;

CustVal.ServerValidate +=

new System.Web.UI.WebControls.ServerValidateEventHandler(MailToUrlValidator);

Container.Controls.Add(CustVal);

Should the user input not pass the test, two important things must both be true:

ValArgs.IsValid must be set to false

An error message to be displayed must be assigned to Source.ErrorMessage

When both these conditions are met, an error text is presented in EPiServer Edit
mode and further processing is not possible (until the error has been corrected).

Figure 8-2: An error ‘created’ in custom validator is signalled in EPiServer Edit mode.

The error message assigned to Source.ErrorMessage is displayed in EPiServer
Edit mode with a red asterisk displayed next to the failing input field.
206

8. Custom Property Data Types and Filters
Custom Filters

Custom filters, or filters for short, are connected to listings and menus. Filters aid
in selecting what goes in the list and what doesn’t. As we’re talking EPiServer in
this book, filters help getting the pertinent pages into listings or out of listings.
One way of looking at them would be to see filters as an intermediary between
the Web Page Tree and various lists and menus, often in the form of templated
controls.

Filters perform three major tasks. They help in:

Adding pages to listings

Removing pages from listings

Ordering listings

Filters are C# classes (or .NET classes, irrespective of what .NET language you
happen to prefer).

Figure 8-3: The role of Custom Filters. On the left a templated control fed from the Page database, and on the
right a Custom Filter is used to select the data.

Figure 8-3 shows the place and role of Custom Filters. They act as go-betweens
between data source and data recipient. The power of Custom Filters far exceed
that of any other selection means available, e.g. FindPagesWithCriteria (EPiServ-
er.DataFactory.FindPagesWithCriteria).

To fully appreciate filters, let’s approach them in a roundabout manner. We
will start by looking at a templated control which does not utilise any filtering, as
in example 8-4.

Example 8-4: MenuList (EPiServer.WebControls.MenuList) using Start page as a starting point of a listing.

<EPiServer:PageList runat="server" id="CustomFilterPageList"

PageLink="<%# EPiServer.Global.EPConfig.StartPage %>">

<ItemTemplate>

<tr>

<td><EPiServer:Property PropertyName="PageLink" id="Prop1" runat="server" /></td>

Page Database

Templated Control

Custom Filter
207

Custom Filters
</tr>

</ItemTemplate>

</EPiServer:PageList>

The code in example 8-4 produces a table of links comprising all the top-level
pages (all pages that are daughter pages of the start page). But suppose we need
this list to only display pages which in turn have their own daughter pages, what
then? Well, this is a problem easily solved with filters (as you would’ve thought).

Let’s break up the bond between the sender and receiver to insert a Filter. As
a Filter is created in a .NET language, we can do anything we like in the Filter
code.

Creating the Custom Filter Class

Example 8-5: Custom Filter Class CustomFilterOnlyMothers.

namespace development {

/// <summary>CustomFilterOnlyMothers implements a filter for PageList

/// controls to include only pages that have sub-pages.</summary>

public class CustomFilterOnlyMothers {

public CustomFilterOnlyMothers() {

}

public void OnFilter(object sender, EPiServer.Filters.FilterEventArgs e) {

EPiServer.Core.PageDataCollection PageColl = e.Pages;

EPiServer.Core.PageData CurrPage;

for (int PageNum = 0; PageNum < PageColl.Count; PageNum++) {

CurrPage = PageColl[PageNum];

if (EPiServer.Global.EPDataFactory.GetChildren(CurrPage.PageLink).Count > 0) {

continue;

}

PageColl.RemoveAt(PageNum);

PageNum--;

}

}

}

}

The assignment to local variable PageColl is very important. As you can see in
example 8-5, PageColl is not assigned a new PageDataCollection. It is simply set
to point to the same collection as e.Pages. This is very important to remember,
should you create a new collection and initialise this collection using e.Pages, your
selection attempts will fail miserably. It will be as no filtering has taken place.

Please also notice that there’s no change to the HTML part of the Web Form/
Web User Control, it’s all happening in the code-behind file.
208

8. Custom Property Data Types and Filters
Connecting the Custom Filter to the Control

So, we have a control and we have a filter, now we need to connect them. Luckily
for us, there’s an event, Filter, implemented in the class PageControlBase (EPi-
Server.WebControls.PageControlBase). PageControlBase is an abstract class and
mother class for very many of the templated controls in EPiServer including, e.g.
PageList and MenuList.

The Filter event is always triggered before data is displayed in a control giving
us the opportunity to insert our Custom Filter when this event is hooked.

To perform the connection between Custom Filter and control object we add
one line of code to the OnInit function in the source-behind file of the Web
Form or Web User Control onto which the templated control has been added.

Example 8-6: Code connecting the Custom Filter CustomFilterOnlyMothers to the PageList control
CustomFilterPageList.

override protected void OnInit(System.EventArgs e) {

InitializeComponent();

base.OnInit(e);

CustomFilterPageList.Filter += new EPiServer.WebControls.FilterEventHandler(

(new development.CustomFilterOnlyMothers()).OnFilter);

}

In the code for example 8-6 you see ‘development’ used in class name for the first
time in any example. You’ve probably already realised that this is the name space
used for all EPiServer default installations (‘namespace development {’).

The Results of Using the Custom Filter

We used the Mimic Web site to create the filter, figure 8-4 shows the result from
this site.

Figure 8-4: Before and after using the Custom Filter. On the left the templated control without the Filter and on
the right the results after applying the Custom Filter.

More Information on the EPiServer Web Site

Filters may easily co-operate with properties added to pages. For more informa-
tion about Custom Filters and an example on how to let Filters utilise page prop-
erties there’s a document on the EPiServer Web site, http://www.episerver.com.
209

Custom Filters
210

9
Data Modelling

This chapter is dedicated to data, we’ll look more closely at EPiServer.DataFac-
tory, the class responsible for all shuffling of Web pages between the database
and the Web site. As the XML Web Services functions of EPiServer are depend-
ent the database services we will discuss those here to and in the final part of the
chapter we’ll take a look at the export and import functions that were introduced
in EPiServer 4.3, together with the exciting page synchronization functions.

EPiServer.DataFactory and EPiServer.Global.EPDataFactory

Both EPiServer.DataFactory and EPiServer.Global.EPDataFactory have been
mentioned before, now the time has come to actually discuss them – they’re very
important to EPiServer Web site operation.

Take a look at figure 1-6 on page 10. If we blow up the little box labelled
‘EPiServer DLLs’ and its connection to the database we see that it’s actually
EPiServer.Global.EPDataFactory that handles the database access, i.e. it handles
loading, saving and deleting pages as well as caching them.

Figure 9-1: EPiServer.DataFactory object EPiServer.Global.EPDataFactory.

EPiServer.Global.EPDataFactory May Be Used in Non-Content Framework Web Forms

One use for EPiServer.Global.EPDataFactory is in Web Forms that for some
reason do not adhere to the EPiServer Content Framework, meaning they do not
inherit from EPiServer.PageBase or one of its descendants. In this case the de-
veloper may choose to implement EPiServer.Core.IPageSource directly in the
Web Form. There’s actually one example of this that ships with EPiServer. EPiS-
erver has some provision for mobile units, such as WAP telephones and to assist
in developing such solutions the Web Form Mobile.aspx is provided.

EPiServer.Global.EPDataFactory

EPiServer DLLs, EPiServer Infrastructure

EPiServer Data Base
211

EPiServer.DataFactory and EPiServer.Global.EPDataFactory
Example 9-1: Using EPDataFactory in non-Content Framework Web Form Mobile.aspx.

using EPiServer.Core;

…

public class Mobile : System.Web.UI.MobileControls.MobilePage, IPageSource {

…

public virtual PageData GetPage(PageReference pageLink) {

return (EPiServer.Global.EPDataFactory.GetPage(pageLink,

EPiServer.Security.AccessLevel.Read));

}

public virtual PageDataCollection GetChildren(PageReference pageLink) {

return (EPiServer.Global.EPDataFactory.GetChildren(pageLink,

EPiServer.Security.AccessLevel.Read));

}

…

}

As can be seen in example 9-1, the Web Form Mobile.aspx implements IPage-
Source.GetPage and IPageSource.GetChildren itself using EPiServer.Global.EP-
DataFactory.

It also implements IPageSource.CurrentPage. It is not shown in the example
for space reasons. Mobile.aspx cannot rely on EPDataFactory for its CurrentPage
implementation – EPDataFactory.CurrentPage always returns null.

Public Properties, Methods and Events for EPiServer.DataFactory

EPiServer.DataFactory implements the interface EPiServer.Core.IPageSource
(see page 153), so we expect to find the property CurrentPage and the two meth-
ods GetPage and GetChildren.

Table 9-1: Public properties for EPiServer.DataFactory.

Property Name Description

CurrentPage Gets data for the current page from EPiServer.Core
.IPageSource. DataFactory.CurrentPage always
returns null – it was part of the IPageSource pack-
age.

DynPropTree The global instance of DynamicPropertyTree that is
used to access information about dynamic proper-
ties. Static (Shared in Visual Basic .NET).

ListingFetchCacheHits The number of page listings that have been read
from the cache.
212

9. Data Modelling
ListingFetchCount How many page listings that has been returned from
the DataFactory.

ListingFetchDatabaseReads How many page listings has been read from the
local database.

PageFetchCacheHits How many pages has been read from the cache.

PageFetchCount How many single pages that has been returned from
the DataFactory.

PageFetchDatabaseReads How many pages has been read from the local data-
base.

StatisticsCollectedSince Current statistics has been collected since this point
in time.

Table 9-2: Public methods for EPiServer.DataFactory.

Method Name Description

Copy Copy a page to another container.

Delete Delete a page from EPiServer

DeleteChildren Delete children of a page from EPiServer

DeleteVersion Delete a single version of a page.

FindPagesWithCriteria Search for pages that match a specified set of criteria

GetChildren Overloaded, from EPiServer.Core.IPageSource.

GetDefaultPageData Get a PageData object with default values – the first step
of creating a new page

GetPage Overloaded, from EPiServer.Core.IPageSource.

LookupRemoteSite Look-up a remote site by name.

Move Move a page to another container

MoveToWastebasket Move a page to the waste basket.

Ping Calls a remote server for testing the connection.

Table 9-1: Public properties for EPiServer.DataFactory.

Property Name Description
213

EPiServer.DataFactory and EPiServer.Global.EPDataFactory
ReloadRemoteSites Reload remote site cache.

ResetCounters Reset all page statistics counters.

Save Save page to database

Table 9-3: Public events for EPiServer.DataFactory.

Event Name Description

CheckedInPage Occurs when a version has been checked in.

CheckingInPage Occurs when a version is requested to be checked in.

CreatedPage Occurs when a new page is created.

CreatingPage Occurs when a page is requested to be created.

DeletedPage Occurs when a page has been deleted.

DeletingPage Occurs when a page is requested to be deleted.

FailedLoading-
Children

Occurs when a page list failed for some reason.

FailedLoadingPage Occurs when a page load failed for some reason.

LoadedChildren Occurs when a list has been loaded from GetChildren.

LoadedDefault-
PageData

Occurs when a empty page is loaded through GetDefault-
PageData.

LoadedPage Occurs when a page is loaded through GetPage.

LoadingChildren Occurs when a list is requested from GetChildren.

LoadingDefault-
PageData

Occurs when an empty page is requested through GetDe-
faultPageData.

LoadingPage Occurs when a page is requested through GetPage.

MovedPage Occurs when a page has been moved.

MovingPage Occurs when a page is requested to be moved.

PublishedPage Occurs when a page/version has been published.

Table 9-2: Public methods for EPiServer.DataFactory.

Method Name Description
214

9. Data Modelling
More Information on Using the Properties, Methods and Events in EPiServer.DataFactory

EPiServer.DataFactory.DynPropTree

DynPropTree is an instance of the EPiServer.Core.DynamicPropertyTree class.
It holds information about the dynamic properties that have been added to the
EPiServer solution.

Page Cache Statistics Related Properties

Considering its role, it’s only natural to find properties for EPiServer.DataFacto-
ry that tally pages as they move between the database, cache and Web server.

Example 9-2: Statistics example, from the SDK help file (EPiServer4SDK.chm).

<h2>Statistics</h2>

Since <%= EPiServer.Global.EPDataFactory.StatisticsCollectedSince.ToString("r") %>

<h3>Pages:</h3>

From Cache: <%= EPiServer.Global.EPDataFactory.PageFetchCacheHits %>

From Database: <%= EPiServer.Global.EPDataFactory.PageFetchDatabaseReads %>

Total: <%= EPiServer.Global.EPDataFactory.PageFetchCount %>

Ratio: <%= Math.Round((double) EPiServer.Global.EPDataFactory.PageFetchCacheHits / (double)

EPiServer.Global.EPDataFactory.PageFetchCount * 100, 2) %>% hit rate

<h3>Listings:</h3>

From Cache: <%= EPiServer.Global.EPDataFactory.ListingFetchCacheHits %>

From Database: <%= EPiServer.Global.EPDataFactory.ListingFetchDatabaseReads %>

Total: <%= EPiServer.Global.EPDataFactory.ListingFetchCount %>

Ratio: <%= Math.Round((double) EPiServer.Global.EPDataFactory.ListingFetchCacheHits / (double)

EPiServer.Global.EPDataFactory.ListingFetchCount * 100, 2) %>% hit rate

To reset these counters and to set StatisticsCollectedSince call EPiServer.Data-
Factory.ResetCounters.

EPiServer.DataFactory.Delete

Example 9-3: Using DataFactory.Delete in an EPiServer Web User Control to delete the current page.

<!-- In the HTML part -->

PublishingPage Occurs when a page/version is requested to be published.

SavedPage Occurs when a existing page is modified and saved.

SavingPage Occurs when a existing page is modified and saved.

Table 9-3: Public events for EPiServer.DataFactory.

Event Name Description
215

EPiServer.DataFactory and EPiServer.Global.EPDataFactory
<asp:LinkButton id="DeleteButton" onclick="DeletePage" runat="Server">[

<EPiServer:Translate Text="#delete" runat="server" id="Translate20" />]</asp:LinkButton>

…

// In the code-behind file.

protected void DeletePage(object sender, System.EventArgs e) {

EPiServer.Core.PageReference parentPage = CurrentPage.ParentLink;

Global.EPDataFactory.Delete(PageBase.CurrentPageLink, true);

EPiServer.Core.PageData parentData = GetPage(parentPage);

Response.Redirect(parentData.LinkURL, true);

}

The code in example 9-3 is taken from an EPiServer Web User Control using
EPiServer.DataFactory.Delete to delete the current page. It uses a combination
of an ASP.NET LinkButton and a function in the code-behind file. The onclick
event for the LinkButton is connected to the function DeletePage. This function
is written to make the deletion smooth by first saving ParentLink property for the
current page and later, after deletion of the current page using the saved Par-
entLink, redirecting the user’s browser to that page.

EPiServer.DataFactory.DeleteChildren

DeleteChildren is the companion of Delete. It lets you delete all children of a
page, e.g., the Recycle Bin.

EPiServer.DataFactory.FindPagesWithCriteria

Example 9-4: Using FindPagesWithCriteria to find pages that were published during the last seven days.

<!-- In the HTML part. -->

<EPiServer:PageList runat="server" ID="RecentlyPublishedPages">

<HeaderTemplate>

<tr><td>Recently Published Pages</td></tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td><%# Container.CurrentPage.StartPublish.ToString("r") %>

 <%# Container.CurrentPage.PageName %>

</td>

</tr>

</ItemTemplate>

</EPiServer:PageList>

// In the code-behind file.

EPiServer.PropertyCriteriaCollection RecentlyPublishedCriteria =

new EPiServer.PropertyCriteriaCollection();

EPiServer.PropertyCriteria RecentlyPublishedCriterion = new EPiServer.PropertyCriteria ();
216

9. Data Modelling
RecentlyPublishedCriterion.Condition = EPiServer.Filters.CompareCondition.GreaterThan;

RecentlyPublishedCriterion.Type = EPiServer.Core.PropertyDataType.Date;

RecentlyPublishedCriterion.Name = "PageStartPublish";

RecentlyPublishedCriterion.Value = System.DateTime.Now.AddDays(-7).ToString();

RecentlyPublishedCriterion.Required = true;

RecentlyPublishedCriteria.Add(RecentlyPublishedCriterion);

EPiServer.Core.PageDataCollection RecentPages;

RecentPages = EPiServer.Global.EPDataFactory.FindPagesWithCriteria(

EPiServer.Global.EPConfig.RootPage, RecentlyPublishedCriteria);

RecentlyPublishedPages.DataSource = RecentPages;

RecentlyPublishedPages.DataBind();

One of the obvious uses for FindPagesWithCriteria is Web site maintenance, use
it to find pages that were written by a certain person (e.g. using string property
WriterName, or, as in example 9-4, to list all the pages that were published during
the last seven days.

EPiServer.DataFactory.GetChildren and GetPage

GetChildren and GetPage are implementations of IPageSource.GetChildren and
GetPage, respectively. This means that it’s more natural to user either EPiServ-
er.PageBase.GetChildren, or GetPage, or EPiServer.UserControlBase.GetChil-
dren, or GetPage. However, not all Web Forms or Web User Controls in an
EPiServer solution inherit from the EPiServer base classes and for them, as
shown in example 9-1, EPiServer.DataFactory.GetChildren and GetPage are the
best options.

EPiServer.DataFactory.GetDefaultPageData

It’s not uncommon to have the need to create new Web pages in an EPiServer
solution – remember: if it’s a page it can be stored in the database and have the
full support of the EPiServer infrastructure.

One such example is to provide a discussion forum. EPiServer ships with a
template and Web User Control to provide this exact feature. If you open the ex-
ample Web site and click on Templates in the top menu you’ll see what it looks
like.

Figure 9-2: Discussion forum template which ships with EPiServer.
217

EPiServer.DataFactory and EPiServer.Global.EPDataFactory
When the link called ‘Create new post’ is clicked, another template is presented,
one that allows creation of a new posting.

Figure 9-3: New discussion forum posting template.

The onclick event ASP.NET Button labelled Publish is connected to a function
called SavePage.

Example 9-5: Function SavePage which saves newly created discussion forum postings.

protected void SavePage(object sender, System.EventArgs e) {

if (_newPost) {

Page.Validate();

if (! Page.IsValid) {

Page.DataBind();

return;

}

EPiServer.Core.PageData newPage=

Global.EPDataFactory.GetDefaultPageData(PageBase.CurrentPageLink, _pagetypeID);

newPage.PageName= PageName.InnerProperty.Value.ToString();

if (! MainBody.InnerProperty.IsNull) {

newPage["MainBody"]= MainBody.InnerProperty.Value.ToString();

}

if (! WriterName.InnerProperty.IsNull) {

newPage["WriterName"]= WriterName.InnerProperty.Value.ToString();

}

Global.EPDataFactory.Save(newPage, EPiServer.DataAccess.SaveAction.Publish);

Response.Redirect("Conference.aspx?id=" + newPage.PageLink.ID);

} else {

Global.EPDataFactory.Save(CurrentPage, EPiServer.DataAccess.SaveAction.Publish);

Response.Redirect("Conference.aspx?id=" + PageBase.CurrentPageLink.ID);

}

}

If you look at the code in 9-5, you can see that after some initial checking a new
EPiServer.Core.PageData is instantiated and given a default set of page data by
calling GetDefaultPageData. Subsequently, the PageData.PageName property is
218

9. Data Modelling
given the same contents and the header for the forum posting, in true EPiServer
style. As the code is part of the example Web, site it’s rather safe to assume that
properties ‘MainBody’ and ‘WriterName’ both exists.

Lastly, the new page is saved and published and the viewer’s Web browser re-
directed to this new page.

EPiServer.DataFactory.Save

To save pages in the database, simply call EPiServer.Global.EPDataFactory.Save
and you’re done!

Example 9-6: Using EPiServer.DataFactory.Save.

private void SavePage() {

if (((EPiServer.EditPage) Page).IsNewPage) {

CurrentPage["Sid"] = PageBase.CurrentUser.Sid;

CurrentPage.PageName = PageBase.CurrentUser.Identity.Name;

CurrentPage.VisibleInMenu = false;

}

EPiServer.Global.EPDataFactory.Save(CurrentPage, EPiServer.DataAccess.SaveAction.Publish);

}

Example 9-6 shows code from an EPiServer Web User Control Profile.ascx. This
control is used to handle user information, such as first and last name, e-mail ad-
dress, etc. The function SavePage first tests whether the current page is a new
page and if so sets a couple of attributes to the appropriate settings. Lastly EPiS-
erver.DataFactory.Save is used to save the new, or changed, page in the database.

EPiServer.DataFactory Events

EPiServer.DataFactory.CreatingPage

As CreatingPage is triggered each time a new page is being created, you can use
it for validation tasks which aren’t as simplistic as just making sure a value has
been entered (as this can be done by checking the pertinent check box in EPiS-
erver Admin for any property/value).

The code in example 9-7 hooks the CreatingPage event to make sure that if
there is a property/value called ‘WriterName’, it gets some content which links it
back to the logged-on user.

Example 9-7: Using CreatingPage.

protected void Application_Start(object sender, System.EventArgs e) {

EPDataFactory.CreatingPage += new EPiServer.PageEventHandler(OnCreatingPage);

}

private void OnCreatingPage(object sender, EPiServer.PageEventArgs e) {

if (e.Page.Property.Exists("WriterName")) {

if (e.Page.Property["WriterName"].IsNull) {
219

EPiServer.DataFactory and EPiServer.Global.EPDataFactory
e.Page["WriterName"] =

(EPiServer.Security.UnifiedPrincipal.Current.UserData.Email != null ?

EPiServer.Security.UnifiedPrincipal.Current.UserData.Email :

EPiServer.Security.UnifiedPrincipal.Current.UserData.DisplayName);

}

}

}

EPiServer.DataFactory.PublishedPage

This event is used by the page synchronization example. See example 9-13 on
page 231.

EPiServer.DataFactory.SavingPage

The following example was inspired by a question posed in the Developer Com-
munity forum on www.episerver.com. The issue was how to replace certain na-
tional letters with their corresponding HTML Entity tag, e.g. always replace ‘æ’,
with ‘æ’. EPiServer.DataFactory.SavingPage is an excellent candidate to
help resolve this issue.

Example 9-8: Using EPiServer.EPDataFactory.SavingPage in Global.asax.cs.

namespace development {

/// <summary>EPiServer.Global is the focal point for all database access

/// and home to EPiServer.Global.EPDataFactory.</summary>

public class Global : EPiServer.Global {

protected void Application_Start(object sender, System.EventArgs e) {

EPDataFactory.SavingPage += new EPiServer.PageEventHandler(OnSavingPage);

}

string NationalLetterToHtmlEntity(string StringWithNationalLetters) {

// Replace Nordic letter with HTML entity.

StringWithNationalLetters = StringWithNationalLetters.Replace("æ", "æ");

return StringWithNationalLetters;

}

private void OnSavingPage(object sender, EPiServer.PageEventArgs e) {

for (int PropNum = 0; PropNum < e.Page.Property.Count; PropNum++) {

EPiServer.Core.PropertyData StringProp = e.Page.Property[PropNum];

if ((StringProp.Type == EPiServer.Core.PropertyDataType.LongString) &&

(! StringProp.IsNull)) {

StringProp.Value = NationalLetterToHtmlEntity((string) StringProp.Value);

}

}

}

220

9. Data Modelling
}

}

The code in example 9-8 connects the function OnSavingPage to the event Sav-
ingPage. In OnSavingPage, properties on the current page are enumerated and
the Value property of all LongString properties is passed to the function Nation-
alLetterToHtmlEntity.

Depending on your needs, it is easy to adapt the code to other scenarios, e.g.
if you have a large number of LongString attributes, you may want to introduce
a StringBuilder local variable in the function NationalLetterToHtmlEntity. Also,
you might elect to only convert certain named properties as in the following ex-
ample.

Example 9-9: Using EPiServer.EPDataFactory.SavingPage in Global.asax.cs to convert MainBody.

private void OnSavingPage(object sender, EPiServer.PageEventArgs e) {

const string PropName = "MainBody";

if (e.Page.Property.Exists(PropName)) {

e.Page.Property[PropName].Value =

NationalLetterToHtmlEntity((string) e.Page.Property[PropName].Value);

}

}

XML Web Services and EPiServer

Correctly naming Web Services as present in ASP.NET has been like trying to
catch the wind – it keeps getting away. Whether you use the name ‘Web Services’,
‘XML Web Services’, ‘SOAP Web Services’ or any other name, EPiServer both
acts as a Web Service and also plays nicely with others.

There are several possibilities involving EPiServer and Web Services.

EPiServer can act as a server to any Web Services client

One EPiServer Web site may access DataFactory on another EPiServer Web
site

EPiServer may use a Web Service as a data source in addition to DataFactory.
221

XML Web Services and EPiServer
The Web Services possibilities in EPiServer stem from the fact that EPiServer ex-
poses DataFactory as a Web Service.

Figure 9-4: EPServer.Global.EPDataFactory is exposed as a Web Service.

In figure 9-4, which is an amendment to figure 9-1 on page 211, EPiServer’s Web
Services exposure layer is shown as an integral part of EPiServer.Global.EPDa-
taFactory.

Consuming Data from an EPiServer Web Site – Web Services Client

Creating an EPiServer Web Services consumer client involves creating a Data-
FactoryService object to communicate with EPiServer.Global.EPDataFactory.
Depending on the jobs in hand, we could also make the acquaintance of some
rather obscure EPiServer data types. In our example, we will utilise the Web Serv-
ices capabilities of EPiServer to retrieve a list of recently created Web pages (re-
cent for the current EPiServer Web site, that is). In doing so, we’ll be able to use
several familiar methods and data types, but in completely new guises. More
about that when we’ve had a chance to look at the source code.

Preparations

In order for the Web Services client to work, we need to be able to access the
WebServices folder in the root folder of your EPiServer Web site. To do this we
use a particular procedure outlined in the Technical note document Authenticating
Web services on forms authenticated site. This document is available on the EPiServer
home site, http://www .episerver.com. In the Web Services Client example, we
assume that the account is called ‘MyWebServiceAccount’ and that its password
is ‘7thHeaven’.

Create a Windows Application Web Services Client

The Web Services client we create is an ordinary Visual Studio .NET Windows
Application. It is made into a Web Services client by including a Web Reference
to a Web Services server application.

The client will retrieve the Web pages when a Button is clicked. Information
on returned pages will be presented in a ListBox.

1. Create a new Windows Application project in Visual Studio .NET. You
might want to name it ‘WSFindRecentPages’.

EPiServer.Global.EPDataFactory

EPiServer DLLs, EPiServer Infrastructure

EPiServer Data Base

Web Services Interface
222

9. Data Modelling
2. Name the class ‘FindRecentPages’ and form file ‘FindRecentPages.cs’.

3. Add a Web Reference to References (Solution Explorer). The URL to the
Web server will look like this http://server/WebServices/DataFactoryServ-
ice.asmx. You should see a page much like figure 9-5.

Figure 9-5: Page returned when logging on to the page http://.../WebServices/DataFactoryService.asmx.

4. Add a Button and a ListBox to the Form.

5. Everything that’s supposed to happen will take place in the Click event for
the Button. Click on the Button in Design mode and add this code.

Example 9-10: Code to retrieve Web pages from EPiServer via its Web Services interface.

private void butnGetRecentPages_Click(object sender, System.EventArgs e) {

WSFindRecentPages.localhost.DataFactoryService GetPagesFactory =

new WSFindRecentPages.localhost.DataFactoryService();

GetPagesFactory.Credentials = new System.Net.NetworkCredential(

"MyWebServiceUser", "7thHeaven");

GetPagesFactory.PreAuthenticate = true;

WSFindRecentPages.localhost.PropertyCriteria RecentlyCreatedCriterion =

new WSFindRecentPages.localhost.PropertyCriteria();

RecentlyCreatedCriterion.Condition=

WSFindRecentPages.localhost.CompareCondition.GreaterThan;

RecentlyCreatedCriterion.Type= WSFindRecentPages.localhost.PropertyDataType.Date;

RecentlyCreatedCriterion.Name= "PageCreated";

RecentlyCreatedCriterion.Value= System.DateTime.Now.Date.AddDays(-7).ToString();

RecentlyCreatedCriterion.Required= true;

WSFindRecentPages.localhost.PropertyCriteria[] RecentlyCreatedCriteria =

new WSFindRecentPages.localhost.PropertyCriteria[] { RecentlyCreatedCriterion };

WSFindRecentPages.localhost.PageReference StartPageRef=
223

XML Web Services and EPiServer
new WSFindRecentPages.localhost.PageReference();

StartPageRef.ID = 3;

WSFindRecentPages.localhost.RawPage[] RecentPages =

GetPagesFactory.FindPagesWithCriteria(StartPageRef, RecentlyCreatedCriteria);

foreach (WSFindRecentPages.localhost.RawPage CurrPageData in RecentPages) {

string PropsString = string.Empty;

foreach (WSFindRecentPages.localhost.RawProperty RawProp in CurrPageData.Property) {

PropsString += RawProp.DisplayName + "\t"

+ (RawProp.Value != null ? RawProp.Value : "<null>") + "\t";

}

listRecentPages.Items.Add(PropsString);

}

}

6. Compile, build, run and then click on the Button. Provided some pages have
actually been made during the last seven days, the ListBox should look a bit
like this.

Figure 9-6: Example of results using Web Services to retrieve page information from EPiServer.

Now, there’s a lot of interesting things going on in the Click event service func-
tion. Firstly, example 13-20 on page 293, has been doing the same basic assign-
ment of retrieving recently created pages from EPiServer. The big difference
between that code and the present is that this time we’re far away from an EPi-
Server so we cannot use all the nifty constructs and data types that are available
for EPiServer components. Let’s start from the beginning with WSFindRecent-
Pages.localhost.DataFactoryService. ‘WSFindRecentPages’ is the current name
space, ‘localhost’ is the name of server carrying the Web Services functions. So,
instead of adding EPiServer.dll and System.Web.dll and using EPiServer.Data-
Factory as the data type for GetPagesFactory, you have to use WSFindRecent-
Pages.localhost.DataFactoryService. As you’ll soon be aware, this holds true for
every class that has an EPiServer origin.
224

9. Data Modelling
Moving along, we skip the credentials bit – nothing special here. Next stop is
the PropertyCriteria class. This is also of the WSFindRecentPages.localhost ‘per-
suasion’, and you have to adapt when assigning contents to its properties. Find-
PagesWithCritiera in this guise does not use a collection but rather an array of
criteria. Oh well, just do what you’re told. The penultimate interesting part is the
return type of FindPagesWithCriteria – this returns an array of WSFindRecent-
Pages.localhost.RawPage objects. These RawPage objects are very similar to
EPiServer.Core.RawPage, so we can use information about this to help with WS-
FindRecentPages.localhost.RawPage. EPiServer.Core.RawPage has two fields:
ACL and Property. The said RawPage.Property is of the type EPiServer.Core
.RawProperty.

As you can see in the code in example 9-10, we enumerate the RawProperty
objects found in the RawPage.Property collection. Doing this is quite interesting,
as the name of the RawProperty (EPiServer.Core.RawProperty.Name) is the
same as you would use in a EPiServer.WebControls.Property statement. The
RawProperty names in table 9-4 were returned running the code above.
Table 9-4: RawProperty.Name returned to Web Services client.

RawProperty.Name RawProperty.Name RawProperty.Name

PageCategory PageLink PageTypeID

PageParentLink PagePendingPublish PageWorkStatus

PageFolderID PageDeleted PageName

PageStartPublish PageStopPublish PageChangedOnPublish

PageVisibleInMenu PageCreated PageChildOrderRule

PagePeerOrder PageLanguageID PageArchiveLink

PageExternalURL PageShortcutType PageShortcutLink

PageTargetFrame PageLinkURL PageTypeName

PagePeerOrderRule PageChanged PageSaved

PageUseOutputCache PageCreatedBy PageChangedBy

PageCreatedSID MainBody WriterName

ConferenceContainer MainSearchPage
225

Import and Export
Import and Export

Export and Import Functions in the EPiServer Admin Mode

EPiServer 4.3 sees the introduction of the name space EPiServer.Enterprise. It
contains the classes needed to do in code what can be done with EPiServer Ad-
min mode menu choices Export data and Import data.

Figure 9-7: EPiServer Admin mode menu, Tools section (incomplete).

The classes in EPiServer.Enterprise, as well as the Export/Import data adminis-
trative functions, allow EPiServer objects to be copied to and from one EPiServ-
er site to another. Both parties involved must be EPiServer Web sites, as the
format used is proprietary.

The reason to include the Export/Import data function in the Admin mode
of EPiServer was to facilitate moving a complete EPiServer Web site off a devel-
opment system and into a production environment. Moving from one produc-
tion environment to another is also easy using the Export/Import functions.

Export and Import Classes in EPiServer.Enterprise

Great care and a lot of effort has gone in to the creation of the new classes in the
EPiServer.Enterprise name space.

We have tried our utmost to make these classes as robust as possible and as
graceful as possible when failing. An important task has been to design decision
routes to handle the very many translations that are bound to appear when im-
porting EPiServer objects into an existing Web site. As EPiServer is all about de-
veloper freedom, the import classes have been designed to make intelligent
choices when handling conflicts during import. (We do not envisage many prob-
lems when exporting objects from a Web site.)

The classes are able to handle such non-trivial tasks as what to do when im-
porting page objects which have properties categorised in specific ways into an
EPiServer system which doesn’t have the same category definitions.

An example of this particular problem is the import of a page utilising prop-
erties in the categories ‘News’ and ‘Technical’ into a system that defines only one
of them, Technical. During import, all properties in the ‘Technical’ category will
be imported without any problem and a warning message will be generated about
the missing ‘News’ category. The import will then move on to the next task,
meaning that there should be no interruption during import when ‘likely’ prob-
lems appear. If a Page Type with the same name as an existing Page Type is im-
ported, the existing Page Type is preserved, but is updated with the properties
from the importee.
226

9. Data Modelling
The same kind of gracefulness applies to other data types, i.e. always warn,
never break execution as long as the problem can be managed.

EPiServer.Enterprise

ExportImportBase

Base class for export and import of pages.

Public Properties

Table 9-5: Public properties for EPiServer.Enterprise.ExportImportBase.

Property Name Description

AllowPageSync Allow pages to be synchronized using the
PageLookup during import operation

AutoCloseStream If the input stream is to be closed automatically
after the import/export method has been called

Categories Categories that should be exported or have been
imported

CurrentContext Access the current export/import context without
access to the original class

DestinationPages Pages that should be exported or have been
imported

DestinationRoot The destination root where new pages should be
created

DynamicPropertyDefinitions Definitions of dynamic properties that should be
exported or have been imported

Errors A collection of errors which have been added by
calls to the LogError method

ExternalFolderLookup A look-up table between external folders ID on
the source and destination

Files Files which should be exported or have been
imported

Frames Frames which should be exported or have been
imported

HasErrors If any errors have been reported
227

Import and Export
Public Methods

IncludePageDependencies Set to true to include page dependencies, false oth-
erwise

IsAborting If the current operation has been aborted by a call
to the Abort method

IsDone If the current import/export is done

IsTest If the current import should be started in test
mode

LogContext Set a context or prefix used for logging

PageLookup A look-up table which contains source page ID
and destination page ID.

PageTypes Page types which should be exported or has been
imported

ProgressLog A collection of progress messages which have
been added by calls to the LogProgress method

Stream The stream which should be used to write or read
the actual package

TabDefinitions Tabs to be exported or have been imported

Warnings A collection of warnings which have been added
by calls to the LogWarning method

Table 9-6: Public methods for EPiServer.Enterprise.ExportImportBase.

Method Name Description

Abort Abort the running export/import

AddFileToExport Add a custom file to an export package

GetDestinationPage Get the page on the destination based on an ID number
from the source

LogError Log an error message

LogProgress Log a debug message concerning the progress

Table 9-5: Public properties for EPiServer.Enterprise.ExportImportBase.

Property Name Description
228

9. Data Modelling
DataExporter

Export pages to binary format.

Public Methods

DataImporter

Public Methods

Example Code for Using the EPiServer.Enterprise Classes

Exporting a Page Type

Example 9-11: Exporting a single Page Type using EPiServer.Enterprise.DataExporter.

EPiServer.Enterprise.DataExporter exporter = new EPiServer.Enterprise.DataExporter();

exporter.PageTypes.Add(EPiServer.DataAbstraction.PageType.Load("Ordinary web page"));

exporter.Stream = new System.IO.FileStream("c:\\pagetype.epi4", System.IO.FileMode.Create);

exporter.Export();

Importing a Page Type

Example 9-12: Importing a single Page Type using EPiServer.Enterprise.DataImporter.

EPiServer.Enterprise.DataImporter importer = new EPiServer.Enterprise.DataImporter();

importer.Stream = new System.IO.FileStream("c:\\pagetype.epi4", System.IO.FileMode.Open);

importer.Import();

LogWarning Log a warning message

Table 9-7: Public Methods for EPiServer.Enterprise.DataExporter.

Method Name Description

AddFileToExport Add a custom file to an export package

Export Execute the export

Table 9-8: Public Methods for EPiServer.Enterprise.DataImporter.

Method Name Description

Import Execute the import

Table 9-6: Public methods for EPiServer.Enterprise.ExportImportBase.

Method Name Description
229

Import and Export
Handling Warnings and Errors

Warning and error messages are collected in the properties Warnings and Errors
in class ExportImportBase. Progress messages are collected in the property Pro-
gressLog. (Errors, ProgressLog and Warnings all have the data type System.Col-
lections.Specialized.StringCollection.)

Synchronizing Pages Between EPiServer Web Sites

One of many things to get excited about in EPiServer 4.3 is the possibility of syn-
chronizing pages between EPiServer Web sites. Synchronizing is not nearly as ef-
fortless as using DataImporter and DataExporter, but then again, we’ve tried to
make it as powerful as possible.

The synchronization is wholly under developer control, meaning you decide
what to synchronize and you’re also responsible for maintaining the look-up table
used for synchronization.

Property AllowPageSync is the Focal Point

The focal point for page synchronization is the property AllowPageSync (EPiS-
erver.Enterprise.ExportImportBase.AllowPageSync). Setting this property to
true enables page synchronization.

PageLookup Provides Focusing

Although it is necessary to set AllowPageSync to true, it’s not enough. You also
have to populate the collection PageLookup. PageLookup has a data type of
EPiServer.Enterprise.Util.IntLookup, which allows enumeration using System
.Collections.DictionaryEntry.

PageLookup holds pairs of source and destination identification strings, in ef-
fect providing a translation table between the page exported from the source and
the page already existing in the destination whose contents we wish to synchro-
nize with the source page.

Simple and Manageable Page Synchronisation Example

Synchronized with the release of EPiServer 4.3, a comprehensive example of
Web page synchronization was made available. The simplified example provided
below was derived from that larger example.

We have left a lot of otherwise necessary coding out of this example. For one
thing, there is currently nothing to trigger the import action. You might want to
implement the importing functions as a scheduled job (see chapter 11, Job Sched-
uling). Nor will this example handle warnings, errors or bother with the progress
log.
230

9. Data Modelling
On the Exporting Web Site

The SimpleSyncSample uses a System.Data.DataSet to create a table to be used
when importing. The table proper is passed between the Web sites in an XML
file along with its schema.

On the exporting Web site, we hook the EPiServer.DataFactory.Published-
Page event, so each time a page is published our code will be automatically run.

The facility to copy, or move, the files from the exporting server to the im-
porting is simply to copy the output files to a server share on the importing serv-
er.

Example 9-13: Code on the exporting side to synchronize pages between Web sites.

namespace SimpleSyncSample {

/// <summary>Synchronises page information between sites.

/// </summary>

public class ReplicationPublisher {

publicstring DropPath= "\\\\server\PageSync\DropFolder\\";

public void Init() {

EPiServer.Global.EPDataFactory.PublishedPage+=

new EPiServer.PageEventHandler(OnPublish);

}

private void OnPublish(object sender, EPiServer.PageEventArgs e) {

System.Guid guid = System.Guid.NewGuid();

ExportPage(e.PageLink, guid.ToString() + ".epi4");

CreateEvent(guid, "Test", e.PageLink.ID, e.TargetLink.ID, guid.ToString() + ".epi4");

}

private void CreateEvent(System.Guid guid, string PageName, int sourceID, int destinationID,

string fileName) {

System.Data.DataSet ds= new System.Data.DataSet("EventPackage");

System.Data.DataTable tbl= new System.Data.DataTable("Events");

tbl.Columns.Add("SourceID",typeof(int));

tbl.Columns.Add("DestinationID",typeof(int));

tbl.Columns.Add("ImportFile",typeof(string));

ds.Tables.Add(tbl);

System.Data.DataRow row= tbl.NewRow();

row["SourceID"]= sourceID;

row["DestinationID"]= destinationID;

row["ImportFile"]= fileName;

tbl.Rows.Add(row);

ds.WriteXml(DropPath + guid.ToString() + ".event",

System.Data.XmlWriteMode.WriteSchema);

}

231

Import and Export
private void ExportPage(EPiServer.Core.PageReference pageLink, string fileName) {

EPiServer.Enterprise.DataExporter export = new EPiServer.Enterprise.DataExporter();

export.DestinationPages.Add(EPiServer.Global.EPDataFactory.GetPage(pageLink,

EPiServer.Security.AccessControlList.NoAccess));

export.Stream = new System.IO.FileStream(DropPath + fileName,

System.IO.FileMode.CreateNew);

export.Export();

}

}

}

The code in example 9-13 shouldn’t be too hard to follow. Whenever a page is
published it is also exported, by the function ExportPage, along with the events
file (file extension ‘event’).

On the Importing Web Site

On the importing side of the synchronization puzzle, there’s a bit more to be
done. Every file in the import folder is processed and moved to another folder.

The page file proper is processed in the function ImportEPi4.

Example 9-14: Code on the importing side to synchronize pages between Web sites.

namespace SimpleSyncSample {

/// <summary>Synchronizes page information between sites.

/// </summary>

public class ReplicationSubscriber {

publicstring ListenPath = "c:\\sync\\drop\\";

publicstring LogPath = "c:\\sync\\log\\";

publicEPiServer.Core.PageReferenceSyncToPage= new EPiServer.Core.PageReference (44117);

private void ImportEvents() {

System.IO.FileInfo[]files= new System.IO.DirectoryInfo(ListenPath).GetFiles("*.event");

System.Data.DataSetds= GetPageLookup();

foreach (System.IO.FileInfo file in files) {

System.Data.DataSet evt = new System.Data.DataSet("EventPackage");

evt.ReadXml(file.FullName);

foreach (System.Data.DataRow row in evt.Tables["Events"].Rows) {

int sourceID = (int) row["SourceID"];

int destinationID = (int) row["DestinationID"];

string importFileName = row["ImportFile"] as string;

if (System.IO.File.Exists (ListenPath + importFileName)) {

ImportEPi4(ds, ListenPath + importFileName);

}

232

9. Data Modelling
if (importFileName != null) {

System.IO.File.Move(ListenPath + importFileName, LogPath + importFileName);

}

}

file.MoveTo(LogPath + file.Name);

}

ds.WriteXml(ListenPath + "map.xml", System.Data.XmlWriteMode.WriteSchema);

}

private int LookupPage(int pageID, System.Data.DataSet ds) {

System.Data.DataRow[] rows = ds.Tables["PageLookup"].Select(

"SourceID=" + pageID .ToString());

if (rows.Length == 0) {

return -1;

} else {

return (int) rows[0]["TargetID"];

}

}

private System.Data.DataSet GetPageLookup() {

System.Data.DataSet ds = new System.Data.DataSet("Sync");

if (System.IO.File.Exists (ListenPath + "map.xml")) {

ds.ReadXml (ListenPath + "map.xml");

} else {

System.Data.DataTable tbl = new System.Data.DataTable("PageLookup");

tbl.Columns.Add("SourceID", typeof (int));

tbl.Columns.Add("TargetID", typeof (int));

ds.Tables.Add(tbl);

}

return ds;

}

private void ImportEPi4(System.Data.DataSet ds, string fileName) {

EPiServer.Enterprise.DataImporter importer = new EPiServer.Enterprise.DataImporter();

importer.DestinationRoot = SyncToPage;

importer.AllowPageSync = true;

foreach (System.Data.DataRow row in ds.Tables["PageLookup"].Rows) {

if (! importer.PageLookup.Contains((int) row["SourceID"])) {

importer.PageLookup.Add((int) row["SourceID"], (int) row["TargetID"]);

}

}

233

Import and Export
importer.Stream = System.IO.File.OpenRead(fileName);

importer.Import();

foreach (System.Collections.DictionaryEntry entry in importer.PageLookup) {

int source = (int) entry.Key;

int target = (int) entry.Value;

System.Data.DataRow[] hits = ds.Tables["PageLookup"].Select(

"SourceID=" + source);

if (hits.Length > 0) {

continue;

}

System.Data.DataRow newRow = ds.Tables["PageLookup"].NewRow();

newRow["SourceID"] = source;

newRow["TargetID"] = target;

ds.Tables["PageLookup"].Rows.Add(newRow);

}

}

}

}

234

10
Personalization

An EPiServer information solution is a highly personalizable environment. With
the classes, interfaces and enumerations in the EPiServer.Personalization name
space, you can easily personalize the user environment. EPiServer.Personaliza-
tion is also used to assign Tasks to Editors (or to Admins for that matter).

As part of the personalization capabilities, custom properties for every user
and for every page can be stored opening up a wealth of opportunities. Portal set-
tings, background colours and images, even skinning of the Web site, are but a
few of the possibilities.

Contents of the EPiServer.Personalization Name Space

The EPiServer.Personalization name space supplies classes for personalization
and subscription. The PersonalizedData class can be used to retrieve and save in-
formation about a user, in addition to storing global personalized values or page-
specific values.
Table 10-1: Classes in the EPiServer.Personalization name space.

Class Name Description

PersonalizedData Data class handling personalized information for a
user.

Subscription Handles subscription for the current user through
personalization

SubscriptionInfo Handles subscription for a user other than the one
currently logged in. Use Subscription for the cur-
rently logged on user.

SubscriptionJob Job which handles subscriptions; scheduled auto-
matically by EPiServer Scheduler. Should not be
called from your code.

SubscriptionMail The class which handles sending of e-mail notifica-
tions for subscriptions, used by SubscriptionJob.
235

Class PersonalizedData (EPiServer.Personalization.PersonalizedData)
Class PersonalizedData (EPiServer.Personalization.PersonalizedData)

Being the holder of personalized information, a lot centres around class Person-
alizedData.

SubscriptionPlugInAttribute For subscription plug-ins (enter as ‘Subscription-
PlugIn’ or ‘SubscriptionPlugInAttribute’).

Task Task representation

Table 10-2: Interfaces in the EPiServer.Personalization name space.

Interface Name Description

ISubscriptionHandler Supports sending of customized subscriptions.

Table 10-3: Enumerations in the EPiServer.Personalization name space.

Enumeration Name Description

TaskStatus TaskStatus has the floowing members: NotStarted,
InProgress, Completed, Rejected.

Table 10-1: Classes in the EPiServer.Personalization name space.

Class Name Description

Table 10-4: Public properties for EPiServer.Personalization.PersonalizedData.

Property Name Description

Address User address

Company User organisation name

Current Access personalized information for the current user [static]

Description User description

DisplayName Returns a combination of first name, last name and user
name depending on which are set.

Email User e-mail address

FirstName Users first name

IsModified Check to see if any value has been modified
236

10. Personalization
There are four public methods which PersonalizedData defines itself, or three as
you don’t really need the Save method.

Item, or Storing Other Personalized Settings

Table 10-4 lists the pre-defined properties for PersonalizedData. You are free to
store whatever settings you like in the Item array. These settings are either page-

IsPersonalModified Check to see if any personal information has been changed,
for example FirstName, LastName etc.

Item Indexer.

Language User language

LastName User last name

Mobile User mobile phone number

PersonalizedPages Array of all pages which have personalized information for
this user.

PostalAddress User postal address

PostalNumber User postal number

Telephone User telephone number

Title User title

Table 10-5: Public methods for EPiServer.Personalization.PersonalizedData.

Method Name Description

GetProperties Get the collection containing all page restricted properties; only
used to iterate through values.

Load Load information on users other than the currently logged on
user.

Save Force changes to personalized data to be saved. You should not
need to call this method directly, since any changes to the cur-
rent data are flushed automatically on the Page.Unload event.
This method primarily remains for backwards compatibility.

SetPersonalized-
Properties

Add personalized properties to a page.

Table 10-4: Public properties for EPiServer.Personalization.PersonalizedData.

Property Name Description
237

Class PersonalizedData (EPiServer.Personalization.PersonalizedData)
global for the user or per page. Page-global settings can be thought of as dynamic
properties set for the root page of the Web Page Tree.

Example 10-1: Accessing a custom personal property (from EPiServer4SDK.chm).

if (PersonalizedData.Current != null) {

if (PersonalizedData.Current["MyTestKey"] != null) {

Response.Write(PersonalizedData.Current["MyTestKey"]);

}

PersonalizedData.Current["MyTestKey"] = "NewContents";

}

Example 10-1 shows how to access a custom property for the currently logged-
on user.

Example 10-2: Accessing a custom personal property linked to the current page (from EPiServer4SDK.chm).

if (PersonalizedData.Current != null) {

if (PersonalizedData.Current["MyTestKey", CurrentPage.PageLink] != null) {

Response.Write(PersonalizedData.Current["MyTestKey", CurrentPage.PageLink]);

}

PersonalizedData.Current["MyTestKey", CurrentPage.PageLink] = "NewPageContents";

}

Example 10-2 shows how to access a custom property on the current page for
the currently logged-on user.

Database Storage

Personalized information is stored in the EPiServer database table tblUser and
tblUserProperty, see figure B-2 on page 317. The same figure also provides clues
as to how the EPiServer infrastructure is fo exanple able to maintain the Person-
alizedPages property for PersonalizedData objects.
238

10. Personalization
Using the EPiServer.Personalization Name Space

Accessing Information for the Currently Logged-On User

Depending on the context, you can access information for the currently logged-
on user in several ways. All three properties in table 10-6 return an object of the
type UnifiedPrincipal (EPiServer.Security.UnifiedPrincipal).

Armed with the UnifiedPrincipal object, its personal data is accessed via the User-
Data property of the type PersonalizedData (EPiServer.Personalization.Person-
alizedData).

The obvious shortcut to using any of the properties in table 10-6 is the static
property PersonalizedData.Current, which returns a PersonalizedData object for
the currently logged-on user.

PersonalizedData.GetProperties

Method GetProperties is perhaps mostly used to enumerate the contents of the
property array for the current PersonalizedData object. It has two overloads, one
for retrieving all custom user property settings and one for retrieving custom user
property settings connected to a certain Web page (in accordance with the Item
property itself).

Example 10-3: Enumerating all properties for the currently logged-on user.

if (EPiServer.Security.UnifiedPrincipal.Current != EPiServer.Security.UnifiedPrincipal.AnonymousUser) {

foreach(string NameString in EPiServer.Personalization.PersonalizedData.Current.GetProperties()) {

Table 10-6: Ways to access information for the currently logged-on user.

Property Name Context

EPiServer.Security.UnifiedPrincipal
.Current

Globally accessible, can be used every-
where, even in pages and code-behind files
which are not created from EPiServer Page
Types nor inherit any base class (or class
descendant from a base class).

EPiServer.Security.UnifiedPrincipal
.CurrentSid

Globally accessible, just like Current. Suita-
ble as an argument for the Personalized-
Data .Load method.

EPiServer.PageBase
.CurrentUser

Available in pages and code-behind files of
pages created from Page Types which are
part of the EPiServer Content Framework.

UserControlBase.PageBase
.CurrentUser

Can be used in User Controls which inherit
EPiServer.WebControls.UserControlBase
or any of its descendant classes.
239

Using the EPiServer.Personalization Name Space
if (EPiServer.Personalization.PersonalizedData.Current[NameString] != null) {

…

}

}

}

GetProperties returns all personalized data, including Address, Company, etc. In
doing so, the name of the property (variable NameString) is prepended with ‘Per-
sonal’ in the same manner as page property names are prepended with ‘Page’. So,
to access the ‘Address’ property you would write ‘PersonalAddress’, and so on.

Example 10-4: Enumerating all properties for the current page for the currently logged-on user.

if (EPiServer.Security.UnifiedPrincipal.Current != EPiServer.Security.UnifiedPrincipal.AnonymousUser) {

if (EPiServer.Personalization.PersonalizedData.Current.GetProperties(CurrentPage.PageLink) != null) {

foreach(string NameString in EPiServer.Personalization.PersonalizedData.Current.GetProperties(

CurrentPage.PageLink)) {

if (EPiServer.Personalization.PersonalizedData.Current[NameString] != null) {

…

}

}

}

}

The overloaded version of GetProperties which takes an EPiServer.Core.Page-
Reference parameter returns null when there are no personalized properties for
the referenced page. Hence we first test GetProperties for null-ness in the code
in example 10-4.

PersonalizedData.Load

Example 10-5: Using EPiServer.Personalization.PersonalizedData.Load (from Profile.ascx.cs).

protected void SaveProfile(object sender, System.EventArgs e) {

SavePage();

EPiServer.Personalization.PersonalizedData userData =

EPiServer.Personalization.PersonalizedData.Load((int) CurrentPage["SID"]);

if (userData != null) {

SyncPersonalizedData(userData, false);

}

SwitchMode();

}

The code in example 10-5 is taken from the code-behind file of one of the Web
User Controls which ship with EPiServer, Profile.ascx. Here, PersonalizedDa-
ta.Load is used to load the stored personal information of the user account whose
sid is found in the page property SID. This information is then used to allow the
240

10. Personalization
user to update her personal information. The function SyncPersonalizedData
(not shown) compares present and changed information and saves the synchro-
nised personal information back to the database.

Example 10-6: Loading PersonalizedData for the currently logged-on user.

if (EPiServer.Security.UnifiedPrincipal.Current != EPiServer.Security.UnifiedPrincipal.AnonymousUser) {

EPiServer.Personalization.PersonalizedData CurrUserData =

EPiServer.Personalization.PersonalizedData.Load(EPiServer.Security.UnifiedPrincipal.CurrentSid);

if (CurrUserData != null) {

…

}

}

Example 10-6 shows how to load personal information for the currently logged-
on user using EPiServer.Security.UnifiedPrincipal.CurrentSid.

Using Subscription (EPiServer.Personalization.Subscription)

Example 10-7: Code from the code-behind file of Web Form NewsGroupList.aspx.

public class NewsGroupList : NewsGroup {

protected System.Web.UI.WebControls.LinkButton Subscribe;

protected System.Web.UI.WebControls.Panel PersonalSettings;

protected System.Web.UI.HtmlControls.HtmlTableCell CreateEntry;

private void Page_Load(object sender, System.EventArgs e) {

PersonalSettings.Visible = true;

if (CurrentUser.UserData == null) {

PersonalSettings.Visible = false;

} else if (! EPiServer.Personalization.Subscription.IsSubscribingTo(CurrentNewsGroup)) {

Subscribe.Text = Translate("#subscribe");

} else {

Subscribe.Text = Translate("#unsubscribe");

}

CreateEntry.Visible =

CurrentPage.ACL.QueryDistinctAccess(EPiServer.Security.AccessLevel.Create);

…

}

…
}

The code in example 10-7 is taken from the code-behind file of the NewsGroup-
List.aspx Web Form (part of the example Web site). The code in the Page_Load
function is a good example of using personal information.

To begin with, the code checks whether there are any UserData available for
the CurrentUser. If this property is null, the Panel PersonalSettings will not be
241

Using the EPiServer.Personalization Name Space
shown. Assuming that UserData exist, we want to know whether the current user
already subscribes to the current news group (the code is executing inside a news
group, as it were). If she’s not already a subscriber, the LinkButton Subscribe will
be labelled ‘Subscribe’ (after proper translation). If she actually is a subscriber, the
same LinkButton will be labelled ‘Unsubscribe’.

Last of the personal matters is to find out whether the current user has Create
permission to the current page. If the use does have Create permission, she will
be allowed to create new news group items (which are pages).

Figure 10-1: News group Windows (from the example Web site) as it appears to an anonymous user.

Figure 10-1 is what an anonymous user would see of the news group (i.e. a Cur-
rentUser whose UserData property returns null. Now let’s see what it looks like
with the other kind of user.

Figure 10-2: News group Windows (from the example Web site) as it appears to a logged-on user.

Figure 10-2 shows the same news group as in 10-1, only this time a user has
logged on. Note that the user is apparently not yet subscribing to this news group,
as the LinkButton is labelled ‘Subscribe’. Also notice that she obviously must
have Create permission to the current page, as the CreateEntry object is visible.
242

11
Job Scheduling

Scheduled Jobs – Have the Computer Work for You

The EPiServer infrastructure has a member which keeps a very low profile, at
least in a visual sense. We are of course talking about the EPiServer Scheduler
Service, which is a Windows Service, and these rarely interact with users. In the
open spirit of EPiServer solution development, you can add your own jobs to be
run by EPiServer Scheduler.

Figure 11-1: Scheduled jobs interaction between EPiServer and EPiServer Scheduler.

Figure 11-1 depicts the interactions between EPiServer and its scheduler service.
It is important to notice that EPiServer is actually running the jobs; the Schedul-
er’s assignment is to keep track of which active jobs are set to be executed. At
execution time, EPiServer Scheduler sends a ‘job start signal’ to EPiServer, which
ultimately does its deed.

Figure 11-2: Scheduled jobs section, EPiServer Admin mode.

Figure 11-2 shows the administrative interface for all scheduled jobs in EPiServ-
er, both built-in and custom-made (by yourself or other developers).

One other perhaps obvious thing sets EPiServer Scheduler apart from the rest
of EPiServer. This is that its actions never influence EPiServer Web sites – it
doesn’t interact with the Web server service, although it may use ASP.NET class-
es and objects.

EPiServer Run-Time

EPiServer Scheduler
Subscription: every 60 min.
Automatic emptying of
Recycle Bin: every 2 days
Archive function: every 1 day
Custom #1: every 15 mins.
Custom #2: every 1 months

Run job

Scheduled Jobs
243

Jobs Have Access to the Full Infrastructure
Jobs Have Access to the Full Infrastructure

As is evident from figure 11-1, when creating scheduled jobs you have access to
the complete EPiServer programming environment, anything you can do in a
Web Form or a Web User Control you can also do in a scheduled job.

EPiServer Demands on the Scheduled Job Class

Scheduled jobs are implemented as classes and a new class file is simply added to
your Web site’s project. This ensures that the class is created in the correct name
space.

EPiServer has but two demands on scheduled jobs classes you create yourself.

The class takes an EPiServer.PlugIn.ScheduledPlugIn attribute.

A public static parameter-less string method called ‘Execute’ is present, or

A public static parameter-less void method called ‘Execute’ is present.

Note that the method Execute either has no return type or a ‘string’ return type.

Attribute EPiServer.PlugIn.ScheduledPlugIn

Assigning the ScheduledPlugIn ensures automatic recognition of the new class as
a scheduled job in EPiServer Admin mode.

Execute Method

Any scheduled job class must have a method called Execute. Execute should be
a public string method. Any string returned is displayed on the History tab for the
particular job (see figure 11-8), one row for each time the job has been run.

A Trivial Scheduled Job

Let’s create a trivial class to be used as an EPiServer scheduled job. The only serv-
ice the job will perform is to tell the time of its execution.

1. First create a new class in the EPiServer project, call it TellTime.

Table 11-1: Public Properties for EPiServer.PlugIn.ScheduledPlugIn class.

Property Name Description

DisplayName Of great importance to the administrator handling the scheduled
job in EPiServer Admin mode. This property is appropriately
called DisplayName, as whatever text you assign to it is displayed
in EPiServer Admin mode (see figure 11-6).

HelpFile The custom help page to display for the job.
244

11. Job Scheduling
2. Check that the name space is the expected, without changes made it should
be ‘development’.

Example 11-1: ScheduledPlugIn attribute added to class TellTime.

namespace development {

…

}

3. Add the EPiServer.PlugIn.ScheduledPlugIn to the class. Set its DisplayName
attribute to something helpful. This text will be visible in EPiServer Admin
mode.

Example 11-2: ScheduledPlugIn attribute added to class TellTime.

[EPiServer.PlugIn.ScheduledPlugIn(DisplayName = "Tells time of invocation")]

public class TellTime {

4. Create a public parameter-less string method by the name of ‘Execute’. Code
it to return the current time.

Example 11-3: Public parameter-less string method Execute returning the current time.

public string Execute() {

return System.DateTime.Now.ToString();

}

5. Done. Your class should now be very similar to this:

Example 11-4: Complete TellTime class.

namespace development {

/// <summary>TellTime is an EPiServer scheduled job.</summary>

[EPiServer.PlugIn.ScheduledPlugIn(DisplayName = "Tells time of invocation")]

public class TellTime {

public TellTime() {

}

public static string Execute() {

return System.DateTime.Now.ToString();

}

}

}

6. Compile the solution and either start debugging or simply open the EPiS-
erver Admin mode in your Web browser.

7. Verify that there’s a new scheduled job called ‘Tells time of invocation’.

8. Click on this job name in the left pane.
245

Elementary Troubleshooting of Scheduled Jobs
9. Click on the button ‘Start manually’ in the right pane.

10. Activate the History tab – you should see a new record looking similar to this
(probably not the same date and time, though):

Figure 11-3: Result of running scheduled job ‘Tells time of invocation’.

Elementary Troubleshooting of Scheduled Jobs

There are several things to check for when a scheduled job doesn’t behave as ex-
pected. First check the demands on page 244. The Execute method in particular,
must meet these demands:

Its name must be ‘Execute’, with this exact spelling

It must take no parameters; ‘Execute()’

It must be either public static or public static string

If your Execute method fails any of these demands EPiServer Admin mode will
display an error message.

Figure 11-4: Error message from EPiServer Admin mode trying to run faulty scheduled job.

Debug Scheduled Jobs just like any other EPiServer Component

An excellent, and perhaps obvious, side-effect of the way scheduled jobs are run
is that they are as easy to debug as any other EPiServer component you might
build. Simply set a break point in the code and start the Visual Studio .NET de-
bugger, open EPiServer Admin mode, click on the job name in the left pane and
the click on the button ‘Start manually’ in the right pane. Of course, there’s noth-
ing to stop you from simply starting the Visual Studio .NET debugger and wait-
ing for the next scheduled invocation of the job.
246

11. Job Scheduling
If you need more advanced debugging, please refer to chapter 5, Avoiding Er-
rors, Testing and Debugging, starting on page 95. There’s a section concerning the
EPiServer Scheduler service starting on page 121 in the same chapter.

Figure 11-5: Scheduled job ‘Tells time of invocation’ being debugged.

Develop a Cautious Mentality

Since scheduled jobs are a little bit more involved than other EPiServer compo-
nents, it’s a good idea to always start with a simple basic skeleton, such as above,
compile, install and test run it. With that minor hurdle out of the way, you can
concentrate on the more important aspects of the scheduled job.

Scheduled Job to List All Pages Created Last Week

A more interesting job to perform might be to list all new pages created during
the last week. This could be useful in an environment where there are many edi-
tors creating a lot of pages to help with planning ahead with regards to server ca-
pacity. Once created, we’ll instruct EPiServer to execute this job once a week.

There are a multitude of options as far the report proper is concerned. We’ve
settled on sending the list in an e-mail to a named account. The name of the ac-
count, as well as name of sending account and also the subject line, are stored in
the web.config file for maximum flexibility. Currently there are no more sched-
uled jobs planned, so we boldly call the three settings EPsJobMailFrom, EPsJob-
MailTo and EPsJobMailSubject.

The Code

Example 11-5: Code to implement a custom scheduled job.

namespace development {

/// <summary>NewlyCreatedPages mails a list of newly created pages in

/// the EPiServer database (using PageCreated property).</summary>

[EPiServer.PlugIn.ScheduledPlugIn(DisplayName = "Mail list of newly created pages")]

public class NewlyCreatedPages {

public NewlyCreatedPages() {

// Nothing!
247

Scheduled Job to List All Pages Created Last Week
}

public static string Execute() {

EPiServer.PropertyCriteria PageCreatedSince = new EPiServer.PropertyCriteria();

PageCreatedSince.Name = "PageCreated";

PageCreatedSince.Value = System.DateTime.Now.Date.AddDays(-7).ToString();

PageCreatedSince.Type = EPiServer.Core.PropertyDataType.Date;

PageCreatedSince.Required = true;

PageCreatedSince.Condition= EPiServer.Filters.CompareCondition.GreaterThan;

EPiServer.PropertyCriteriaCollection NewPagesCriteria =

new EPiServer.PropertyCriteriaCollection();

NewPagesCriteria.Add(PageCreatedSince);

EPiServer.Core.PageDataCollection NewPages =

EPiServer.Global.EPDataFactory.FindPagesWithCriteria(

EPiServer.Global.EPConfig.RootPage, NewPagesCriteria,

EPiServer.Security.AccessControlList.NoAccess);

System.Text.StringBuilder PageInfoStrings= new System.Text.StringBuilder();

int NumNewlyCreated= 0;

foreach(EPiServer.Core.PageData NewPage in NewPages) {

try {

NumNewlyCreated++;

PageInfoStrings.AppendFormat(

"Page \"{0}\" created {1} by {2}. {3}
\n",

NewPage.PageName, NewPage.Created, NewPage.CreatedBy,

Global.EPConfig.HostUrl + NewPage.LinkURL);

}

catch {

// Nothing!

}

}

if (NumNewlyCreated > 0) {

SendMail(PageInfoStrings);

}

return string.Format("{0} page(s) created since {1}. Mail sent to {2}.",

NumNewlyCreated, PageCreatedSince.Value,

(string) EPiServer.Global.EPConfig["EPsJobMailTo"]);

}

public static void SendMail(System.Text.StringBuilder MessageBody) {

System.Web.Mail.MailMessage MailMessage = new System.Web.Mail.MailMessage();

MailMessage.From = (string) EPiServer.Global.EPConfig["EPsJobMailFrom"];

MailMessage.To = (string) EPiServer.Global.EPConfig["EPsJobMailTo"];
248

11. Job Scheduling
MailMessage.Subject = (string) EPiServer.Global.EPConfig["EPsJobMailSubject"];

MailMessage.UrlContentBase = EPiServer.Global.EPConfig.HostUrl;

MailMessage.Headers["X-Mailer"]= "EPiServer 4";

MailMessage.Body = MessageBody.ToString();

MailMessage.BodyFormat = System.Web.Mail.MailFormat.Html;

EPiServer.Global.EPConfig.InitSmtpServer();

System.Web.Mail.SmtpMail.Send(MailMessage);

}

}

}

The Comments

The Pseudo Code

Class NewlyCreatedPages written in pseudo code could look like this:

Example 11-6: Class NewlyCreatedPages written in pseudo code.

class NewlyCreatedPages

function Execute

create search criterion for pages, include only pages created since midnight seven days ago

perform the search

iterate through the collection of pages returned from the search

tally the pages

collect and store some information on every page

if there at least was one new page created during the last seven days send an e-mail to —

pre-configured recipient e-mail address passing along the collected page information

return string summarising the operation

function SendMail accepting MessageBody argument

assemble e-mail message including MessageBody argument

initialise the e-mail server

send the assembled message

Search Criterion

The search criterion we decided upon was for page property Created (when used
in searches and in some other instances too, Created is accessed via its Property
alias PageCreated) to be no more than seven days ago. In fact, System.Date-
Time.Now.Date means we’re actually using the midnight of the day seven days
ago, meaning that the pages created at any time on that day are included. You can
find more information on using EPiServer.Property, PropertyCriteriaCollection
on page 195.
249

Scheduled Job to List All Pages Created Last Week
Performing the Search

After adding the single search criterion to the criteria collection, the search is per-
formed using Global.EPDataFactory.FindPagesWithCriteria using the variant
which accepts three arguments; the start page for the search, a criteria collection
and the access permission level needed.

As the start page for the search, we use EPiServer.Global.EPConfig.Root-
Page, as we want every page to be tested and not just those making up the Web
site (in which case we would have specified EPiServer.Global.EPConfig.Start-
Page). Our criteria collection, NewPagesCriteria, comprises a single criterion.
Since we only wish to query the pages’ properties, an access permission of EPiS-
erver.Security.AccessControlList.NoAccess is specified.

There’s more information on using FindPagesWithCriteria, together with
EPiServer.Property and PropertyCriteriaCollection, on page 216.

Enumerating the Pages Found

Next in the function Execute, the page collection returned from FindPagesWith-
Criteria is enumerated and the pages are tallied. In addition to counting the pages,
a multi-line string (using a System.Text.StringBuilder object) is built containing
one line of text for each page found in the search.

Calling SendMail from Execute

The penultimate task performed in the function Execute is to call the SendMail
function passing on the multi-line string built. This call is only performed if the
page search returned any recently created pages.

Finally, in Execute

Lastly in Execute, a summary string is composed and returned to the caller
(meaning EPiServer in this case). To create this summary string, the contents of
a configuration parameter, EPsJobMailTo, are read and included.

Function SendMail

Function SendMail uses functionality in ASP.NET (i.e. System.Web.Mail) to cre-
ate an e-mail message. Again, web.config is read and the contents of all three set-
tings are read and used to create the e-mail message. The message is sent off after
initialisation of the mail server.

Web.config Is Used to Store Configuration Data

Three items of configuration information are added to the web.config file.

EPsJobMailFrom holds the sender e-mail address

EPsJobMailTo stores the recipient e-mail address

EPsJobMailSubject is the subject line for the mail
250

11. Job Scheduling
They have been added as good EPiServer subjects using the EPs prefix.

Discover the New Job in EPiServer Admin Mode

Having successfully compiled the new class into the EPiServer solution, it’s time
to start EPiServer and enter Admin mode. There is no need to manually restart
the EPiServer Web site, it happens automatically.

As you open EPiServer Admin mode, you’ll notice the new scheduled job in
the left pane. Well, it not actually scheduled yet, that’s what we’re about to do.

Figure 11-6: EPiServer Admin mode, new custom scheduled job visible.

Set Up the New Job

To set up the new job, click on its name in the left pane. For this particular job
we had decided on running it once weekly to adjust settings to look like in figure
11-7.

Figure 11-7: Settings for scheduled job ‘Mail list of newly created pages’.

To test the job, click on ‘Start manually’, when sufficient time has elapsed click
on the History tab, which should look something like figure 11-8.

Figure 11-8: First report from new job ‘Mail list of newly created pages’.

In figure 11-8, you can appreciate the beauty of letting Execute be a string return-
ing function – whatever it returns is presented on the History tab, one row for
each time the job is run.
251

Removing an Obsolete Scheduled Job
Removing an Obsolete Scheduled Job

Removing obsolete scheduled jobs is as easy as either deleting the implementing
class file or simply commenting out the ScheduledPlugIn attribute from the class
name and then recompiling.

If you change the class or name space name, the old scheduled job will still be
active but without a settings page. You should manually delete this job from the
database, in table tblScheduledItem.
252

12
File and Folder Objects

File and Folder Handling in EPiServer 4.3 and Later

In EPiServer 4.30, a major change has been made in the way EPiServer handles
static files. This change was made possible by a new file system, which among
other things made it possible to add a virtual share giving access to files not ex-
posed by Internet Information Server. The virtual shares are handled by EPiServ-
er and should not be confused with virtual folders in IIS. Actually, files do not
even have to be located in a traditional file system, they can be stored in any
source that can represent their data in a structured way. You can write your own
file system implementation to work with Microsoft SharePoint for example or
your own company file system with complete integration with EPiServer. In this
release, we have provided a simple sample (on the Web site) which virtualises an
XML file as a complete file system.

A major new feature is that all files (actually folders) can be protected using
EPiServer access permission security. To be able to see or download a file (image,
document, etc.) you now need to have the correct access permissions. The files
corresponding to specific pages are protected by the same access permissions as
the page. This feature requires activation, as the original files need to be moved
to a protected location so that EPiServer can handle all access. If you need this
feature and are using file access in your templates to a protected folder using the
File and Directory classes in .NET, you will have to rewrite your solution to use
the classes in EPiServer.FileSystem name space.

From the Editor perspective, we added a powerful new File Manager which
is integrated with the new file system. Open the FileManager in the ActionWin-
dow by clicking on the new tool to the right on the tool-bar. You can now add
files, search files, delete files, set access permissions on folders, add metadata to
files and more. Look in particular at the file view and you will find a list of all pag-
es that a file has been used on.

EPiServer.FileSystem

Important Note on Path Strings

Path strings used in EPiServer.FileSystem never include device letters or semi-co-
lons; slashes are used instead of back-slashes.
253

EPiServer.FileSystem
Classes

Delegates

FileSystemEventArgs

Table 12-1: EPiServer.FileSystem classes.

Name Description

FileSystemEventArgs Argument passed as part of File System events.

UnifiedDirectory A unified folder. Contains information on a
folder and methods to delete, move and create
new folders.

UnifiedFile Unified file. Contains information on a file and
methods to delete, move and copy files.

UnifiedFileSummary Contains metadata and summary information
on a file as entered by an Editor.

UnifiedFileSystem The global class for the file systems used in
EPiServer. This class contains methods to load
and create folders and files.

UnifiedFileSystemConfiguration Contains configuration information for the
unified file system

UnifiedSearchHit A class that describes a hit returned from Uni-
fiedSearchQuery

UnifiedSearchHitCollection Represents a collection of UnifiedSearchHit
classes.

UnifiedSearchQuery A class to build and execute search queries
against the file system

WebDownloadManager Handles all file downloads.

Table 12-2: EPiServer.FileSystem delegates.

Name Description

FileSystemEventHandler Represents the method which will handle generic file-
system events
254

12. File and Folder Objects
EPiServer.FileSystem.UnifiedDirectory

Public Properties

Public Methods

Table 12-3: Public Properties for EPiServer.FileSystem.UnifiedDirectory.

Property Name Description

ACL The access permissions defined for this folder

Configuration The configuration which defines the various settings for this
handler or virtual folder

IsPageDirectory Whether this folder belongs to a specific page

Name The short name of the folder

Parent The parent folder of this folder

Path The path to this folder

Provider The underlying provider which handles all access

Table 12-4: Public methods for EPiServer.FileSystem.UnifiedDirectory.

Method Name Description

CopyTo Copy the folder to another location

CreateFile Create a new file in the current folder

CreateSubdirectory Create a new subfolder to the current folder

Delete Delete the current folder and all its sub-folders
and files

Get Get the UnifiedDirectory based on the path

GetDirectories Get all sub-folders below the current folder

GetFiles Get all files in the current folder

GetOwnerPage Get the owner page if this folder is considered to
be a special folder for a page

MoveTo Move this folder to a new destination.

PathIsPageDirectory Determines whether it is a page folder based on
the format of the path
255

EPiServer.FileSystem
EPiServer.FileSystem.UnifiedFile

Public Properties

Public Methods

PathIsPageDirectoryOrChild Determine whether it is a page folder or a sub-
folder to a page folder based on the format of the
path

QueryAccess Get the access level for the current user on this
folder

QueryDistinctAccess Query whether a user has a certain access permis-
sion for the current folder

Rename Change name of the folder

Table 12-4: Public methods for EPiServer.FileSystem.UnifiedDirectory.

Method Name Description

Table 12-5: Public properties for EPiServer.FileSystem.UnifiedFile.

Property Name Description

Changed When the file was last changed

Created When the file was created

Length The size of the file in bytes

Name The name of the file

Parent The parent folder of the file

Path The full path for the file

Provider The underlying provider which handles all access

Summary Metadata and file summary information as entered by the editor,
e.g. Title

Table 12-6: Public methods for EPiServer.FileSystem.Unified File.

Method Name Description

CopyTo Copy the current file to another folder

Delete Delete the current file
256

12. File and Folder Objects
EPiServer.FileSystem.UnifiedFileSummary

Public Properties

Public Methods

Get Get the UnifiedFile based on the path

MoveTo Move a file to another folder

OpenRead Open a file for reading

OpenWrite Open a file for writing

QueryAccess Get the access level for the current user on this file

QueryDistinctAccess Query whether a user has a certain access permission for
the current folder

Rename Rename the file

Table 12-6: Public methods for EPiServer.FileSystem.Unified File.

Method Name Description

Table 12-7: Public properties for EPiServer.FileSystem.UnifiedFileSummary.

Property Name Description

Author The author of the file

Category The categories for the file

Comments The comments made for this file

Keywords Keywords specified for this file

Subject The subject of this file

Title The title of this file

Table 12-8: Public methods for EPiServer.FileSystem.UnifiedFileSummary.

Property Name Description

SaveChanges Save changes made to summary
257

EPiServer.FileSystem
EPiServer.FileSystem.UnifiedFileSystem

Public Properties

Public Methods

Public Events

EPiServer.FileSystem.UnifiedFileSystemConfiguration

Public Properties

Table 12-9: Public properties for EPiServer.FileSystem.UnifiedFileSystem.

Property Name Description

Configuration The global configuration object which represents the configura-
tion section in web.config (static)

Root The root folder below all virtual shares (static)

Table 12-10: Public methods for EPiServer.FileSystem.UnifiedFileSystem.

Method Name Description

CreateDirectory Overloaded. Create folder.

GetDirectory Overloaded. Get a folder

GetFile Overloaded. Get a file

IsValidNameSyntax Check to see whether the syntax of a file or folder name
is valid

IsValidPathSyntax Check to see whether the syntax of a path is valid

ResolveDefaultDirectory Resolve the default folder

Table 12-11: Public events for EPiServer.FileSystem.UnifiedFileSystem.

Event Name Description

ResolvingDefaultDirectory Event which allows developers to change the default
folder based on run-time variables

Table 12-12: Public properties for EPiServer.FileSystem.UnifiedFileSystemConfiguration.

Property Name Description

Handlers Array of all handler configuration objects
258

12. File and Folder Objects
Public Methods

EPiServer.FileSystem.UnifiedSearchHit

Public Properties

EPiServer.FileSystem.UnifiedSearchHitCollection

Public Properties

Public Methods

Table 12-13: Public Methods for EPiServer.FileSystem.UnifiedFileSystemConfiguration.

Method Name Description

LookupConfiguration Look-up a configuration object based on the name of the
virtual share

Table 12-14: Public properties for EPiServer.FileSystem.UnifiedSearchHit.

Property Name Description

Name Name of the file

Path Path of the file which was found

Preview A preview of the file contents

Rank Rank of the file hit

Table 12-15: Public properties for EPiServer.FileSystem.UnifiedSearchHitCollection.

Property Name Description

Item Indexer.

Table 12-16: Public methods for EPiServer.FileSystem.UnifiedSearchHitCollection.

Method Name Description

Add Adds a UnifiedSearchHit to the end of the collection.

AddRange Adds a collection of objects to the end of the collection.

Contains Determines whether the collection contains a specific element.

CopyTo Copies the entire collection to a one-dimensional array, starting at
the specified index of the target array.
259

EPiServer.FileSystem
EPiServer.FileSystem.UnifiedSearchQuery

Public Properties

Public Methods

EPiServer.FileSystem.WebDownloadManager

Public Methods

IndexOf Searches for the specified UnifiedSearchHit and returns the zero-
based index of the first occurrence within the entire collection.

Insert Inserts an element into the collection at the specified index.

Remove Removes the first occurrence of a specific UnifiedSearchHit from
the collection.

Table 12-16: Public methods for EPiServer.FileSystem.UnifiedSearchHitCollection.

Method Name Description

Table 12-17: Public properties for EPiServer.FileSystem.UnifiedSearchQuery.

Property Name Description

FileNamePattern The pattern used for matching file

FreeTextQuery Text to search for

MatchSummary A dictionary which contains key/value pairs to search for in
file/folder summaries

ModifiedFrom Limit search to files changed after this date

ModifiedTo Limit search to files changed before this date

Path Search in all files in this path

Table 12-18: Public methods for EPiServer.FileSystem.UnifiedSearchQuery.

Method Name Description

Search Execute the search

Table 12-19: Public methods for EPiServer.FileSystem.WebDownloadManager.

Method Name Description

GetMimeType Returns the MIME type for a specified file path
260

12. File and Folder Objects
EPiServer.FileSystem.FileSystemEventHandler

EPiServer Web Custom Controls that Utilise the EPiServer.FileSystem Classes

With EPiServer 4.3, two Web Custom Controls were introduced which benefit
from the functionality in the classes, delegates and enumerations in the EPiServ-
er.FileSystem name space.

Use of EPiServer.FileSystem in EPiServer 4.3 (and Later)

Starting with EPiServer 4.3, the new unified file system is used in both EPiServer
Admin mode and Edit mode.

IsDownloadableUnifiedFile Check to see whether a file path belongs to the uni-
fied file system.

TransmitFile Transmit a file to the output stream.

Table 12-19: Public methods for EPiServer.FileSystem.WebDownloadManager.

Method Name Description

Table 12-20: Arguments passed to the event function (EPiServer.FileSystem
.FileSystemEventHandler).

Argument Name Description

sender The object which triggered the event

e Event data which contains the Path related to this
event

Table 12-21: Classes in EPiServer.WebControls which use EPiServer.FileSystem functionality.

Class Name Description

FileManager Renders a control for managing folders and files

FileManagerNavigator Renders a control for (typically) providing a FileManager
object with context
261

Using EPiServer.FileSystem
File Management Tool in EPiServer Admin Mode

File Management Tool in EPiServer Admin Mode

In the Tools section of the Admin mode menu there is a ‘File management’ tool
which is dependent on the functionality of the classes in EPiServer.FileSystem.

Figure 12-1: File management tool in Tools section of Admin mode menu (EPiServer 4.3 and later).

This tool is implemented by the Web User Form admin\FileManagement.aspx.
However, this Web Form is no more than a pointer to edit\FileManagement-
Control.ascx (more on this below).

File Management Tool on Action Window in EPiServer Edit Mode

The same File management tool which is available for administrators in EPiServ-
er Admin mode is also available as a choice in the Action window for editors in
EPiServer Edit mode. As you already know, this is the same tool which is imple-
mented by the Web User Control edit\FileManagementControl.ascx for both
modes.

Functionality in the File Management Tool

When familiarising yourself with the File management tool, you’ll notice that it
makes good use of the classes in EPiServer.FileSystem. You can create sub-fold-
ers, add files to folders, search for files, handle file meta information, and so on.

Using EPiServer.FileSystem

UnifiedFileSystem

Configuration Settings

EPiServer.FileSystem uses one or more file systems. You can rely on one of them
being of the type EPiServer.FileSystem.Handler.NativeFileSystem. To enumer-
ate the handling file systems and their respective settings, use the code in example
12-1.
262

12. File and Folder Objects
Example 12-1: Enumeration of handling file systems and their settings.

foreach (EPiServer.FileSystem.Handler.HandlerConfiguration HandlerConfig in

EPiServer.FileSystem.UnifiedFileSystem.Configuration.Handlers) {

System.Collections.IDictionaryEnumerator FsConfigSetting =

HandlerConfig.CustomSettings.GetEnumerator();

while (FsConfigSetting.MoveNext()) {

System.Diagnostics.Debug.WriteLine(FsConfigSetting.Key + "\t" + FsConfigSetting.Value);

}

System.Diagnostics.Debug.WriteLine(HandlerConfig.FS.GetRootDirectory().Name);

System.Diagnostics.Debug.WriteLine(HandlerConfig.IsVirtualShare);

System.Diagnostics.Debug.WriteLine(HandlerConfig.VirtualName);

}

Among the settings found in CustomSettings (EPiServer.FileSystem.Handler
.HandlingConfiguration.CustomSettings) expect to find one key equal to ‘Physi-
calPath’, the contents of which consists of the ordinary path to the root folder of
the file system.

The method GetRootDirectory and the properties IsVirtualShare and Virtual-
Name reveal information about the root folder for the file system.

For the default file system NativeFileSystem, the settings in table 12-22 are to
be expected.

Root Folder

Switching back to the UnifiedFileSystem, the path of the ‘unified’ root is found
in EPiServer.FileSystem.UnifiedFileSystem.Root.Path. This will often simply be
‘/’.

UnifiedDirectory

GetDirectories

Example 12-2: Using EPiServer.FileSystem.UnifiedDirectory.GetDirectories method.

EPiServer.FileSystem.UnifiedDirectory RootDir = EPiServer.FileSystem.UnifiedFileSystem.Root;

Table 12-22: Configuration settings for default file system handler, NativeFileSystem.

Setting Name Contents

HandlerConfig.CustomSettings.Key =
‘PhysicalPath’

‘c:\INetPub\Web Site Name\upload\’, or
similar

GetRootDirectory().Name upload

IsVirtualShare false

VirtualName upload
263

Using EPiServer.FileSystem
foreach (EPiServer.FileSystem.UnifiedDirectory CurrDir in RootDir.GetDirectories()) {

System.Diagnostics.Debug.WriteLine(CurrDir.Name + "\t[" + CurrDir.Path + "]");

}

ACL

For an example of how to enumerate the Access Control List, see example 6-25
on page 147.

GetFiles

The GetFiles method retrieves the files (as a UnifiedFile array) for the specified
folder (UnifiedDirectory object).

Example 12-3: Using EPiServer.FileSystem.UnifiedDirectory.GetFiles method.

EPiServer.FileSystem.UnifiedDirectory UploadDir =

EPiServer.FileSystem.UnifiedFileSystem.GetDirectory("/upload");

if (UploadDir.GetFiles() != null) {

foreach (EPiServer.FileSystem.UnifiedFile CurrFile in UploadDir.GetFiles()) {

System.Diagnostics.Debug.WriteLine(CurrFile.Name + "\t[" + CurrFile.Path + "]");

}

}

UnifiedFile and UnifiedFileSummary

File handling and file information is what the classes UnifiedFile and Unified-
FileSummary have been charged with.

Example 12-4: Using EPiServer.FileSystem.UnifiedDirectory.UnifiedFile.QueryAccess method.

EPiServer.FileSystem.UnifiedDirectory UploadDir =

EPiServer.FileSystem.UnifiedFileSystem.GetDirectory("/upload");

foreach (EPiServer.FileSystem.UnifiedFile CurrFile in UploadDir.GetFiles()) {

System.Diagnostics.Debug.WriteLine(CurrFile.QueryAccess());

}

Example 12-5: Using EPiServer.FileSystem.UnifiedDirectory.UnifiedFile.Summary property.

foreach (EPiServer.FileSystem.UnifiedFile CurrFile in UploadDir.GetFiles()) {

System.Diagnostics.Debug.WriteLine(CurrFile.Summary.Author);

System.Diagnostics.Debug.WriteLine(CurrFile.Summary.Category);

System.Diagnostics.Debug.WriteLine(CurrFile.Summary.Comments);

System.Diagnostics.Debug.WriteLine(CurrFile.Summary.Keywords);

System.Diagnostics.Debug.WriteLine(CurrFile.Summary.Subject);

System.Diagnostics.Debug.WriteLine(CurrFile.Summary.Title);

}

264

12. File and Folder Objects
UnifiedSearchQuery, UnifiedSearchHitCollection and UnifiedSearchHit

The three classes UnifiedSearchQuery, UnifiedSearchHitCollection and Unified-
SearchHit co-operate in searching for files and for text inside files. Note that it is
up to the implementing file system to implement the search infrastructure; thus
you cannot rely on support for all types of searches in all file system handlers.

Example 12-6: Using EPiServer.FileSystem.UnifiedSearchQuery.Search

EPiServer.FileSystem.UnifiedSearchQuery FileSearch = new EPiServer.FileSystem.UnifiedSearchQuery();

FileSearch.FileNamePattern = "*.gif";

FileSearch.Path = "/upload";

EPiServer.FileSystem.UnifiedSearchHitCollection SearchHits = FileSearch.Search();

foreach (EPiServer.FileSystem.UnifiedSearchHit SearchHit in SearchHits) {

System.Diagnostics.Debug.WriteLine(SearchHit.Name + "\t" + SearchHit.Rank + "\t" +

SearchHit.Preview + "\t[" + SearchHit.Path + "]");

}

265

Using EPiServer.FileSystem
266

13
Extending EPiServer

Quite a few aspects of EPiServer are open to extensions. We have already seen
examples of some of the extension types, such as new property data types in
chapter 8, Custom Property Data Types and Filters (section starting on page 201) and
scheduled jobs in chapter 11, Job Scheduling.

Perhaps the most interesting aspect of extensibility is the editor that is availa-
ble for editing LongString properties (the LongString editor is fondly known as
the ‘DHTML Editor’), EPiServer Admin mode and EPiServer Edit mode, re-
spectively.

Extensible Areas of the EPiServer Admin and Edit Mode

Admin Mode Areas

The extensible areas in EPiServer Admin mode partially overlap. When extending
the System settings tab strip you have the area indicated by a white line in figure
13-1 to work with.

Figure 13-1: The extensible areas of EPiServer Admin mode.

System settings Tab Strip
(SystemSettings)

Admin Menu, Tools Section (AdminMenu)
267

Creating Plug-Ins for EPiServer
When you extend by adding a new menu item to Tools section of the Admin
menu, the full right pane area is available to you (indicated by a grey rectangle in
figure 13-1).

Edit Mode Areas

Three areas of EPiServer Edit mode can be extended by plug-ins.

Figure 13-2: The extensible areas of the EPiServer Edit mode.

Creating Plug-Ins for EPiServer
We hope that you expect it to be almost effortless to create plug-ins for EPiServer
now that you’ve been exposed to many of its facets. In fact, we like to think that
extending EPiServer is as easy as creating a Web User Control for EPiServer use.
It is our sincere hope that this chapter will prove us right.

As we don’t expect every single reader of this book to take in this book from
cover to cover in one sitting, we will create all the various types of plug-ins in the
same manner. First, we create what’s best described as a dummy plug-in which
only includes those elements which identify the plug-in as such to the EPiServer
infrastructure. With that out of the way, we move on and create what we hope is
a useful plug-in, one which you might like to include in your own EPiServer code
library. (We know that at least the web.config file editor we create as one example
is going to stay with us for the foreseeable future.)

Order is always a positive and although the plug-ins we create in this chapter
go in the root folder of the Web site, you might want to organise your plug-ins
using a more elaborate folder structure. One suggestion is to create more folders
under the templates folder.

Edit Tree Tab Strip
(EditTree)

Edit Panel Tab Strip
(EditPanel)

Action Window
(ActionWindow)
268

13. Extending EPiServer
EPiServer.PlugIn Name Space
Irrespective of which part of EPiServer you are looking to extend, all the classes,
interfaces and enumerations to use are found in the EPiServer.PlugIn name
space. The inheritance hierarchy for the classes is depicted in figure 13-3. Notice
that all the classes on the left are direct descendants, daughter classes, of Sys-
tem.Object.

Figure 13-3: Inheritance hierarchy for classes in EPiServer.PlugIn name space.

Looking at figure 13-3, you can see that there is only one class attribute you ha-
ven’t seen yet, the GuiPlugInAttribute. This attribute has a wider range of assign-
ments compared with both the PageDefinitionTypePlugInAttribute, for custom
property data types, and ScheduledPlugInAttribute, for scheduled jobs.

Classes in the EPiServer.PlugIn Name Space

EPiServer.PlugIn.PlugInLocator

EPiServer.PlugIn.PlugInDescriptor

EPiServer.PlugIn.GuiPlugInAttribute

EPiServer.PlugIn.PlugInAttribute

EPiServer.PlugIn.PageDefinitionTypePlugInAttribute

EPiServer.PlugIn.ScheduledPlugInAttribute

EPiServer.PlugIn.PlugInSettings

System.Attribute

System.Exception

EPiServer.Core.EPiServerException

System.ApplicationException

EPiServer.PlugIn.PlugInException

Table 13-1: Classes in EPiServer.PlugIn name space.

Class Name Description

GuiPlugInAttribute Settings for plug-ins in graphical modes

PageDefinitionTypePlugInAttribute Used for new Property Data Types.
269

EPiServer.PlugIn Name Space
Interfaces in the EPiServer.PlugIn Name Space

Enumerations in the EPiServer.PlugIn Name Space

EPiServer.PlugIn.PlugInArea Enumeration

Using the members in the PlugInArea enumeration, you decide which part of
EPiServer Admin mode or Edit mode your plug-in will be integrated with.

PlugInAttribute The base class for all specialised plug-in
types.

PlugInDescriptor Describes a plug-in at run-time without
having to create it.

PlugInException Exception thrown by the plug-in frame-
work when a error occurs while loading or
interacting with a plug-in.

PlugInLocator Handles all internal locating of plug-ins.

PlugInSettings Class for handling simple plug-in settings as
a DataSet.

ScheduledPlugInAttribute A plug-in to have a scheduled job with a
simple user interface in Admin mode.

Table 13-1: Classes in EPiServer.PlugIn name space.

Class Name Description

Table 13-2: Interfaces in EPiServer.PlugIn name space.

Interface Name Description

ICustomPlugInLoader Override the default behaviour when plug-ins are loaded.

Table 13-3: Enumerations in EPiServer.PlugIn name space.

Enumeration Name Description

PlugInArea The various areas which are currently supported. See below.

Table 13-4: Members on the enumeration EPiServer.PlugIn.PlugInArea.

Member Name Description

None No plug-in area
270

13. Extending EPiServer
EPiServer.PlugIn.PlugInAttribute

As seen in figure 13-3, the class PlugInAttribute is the mother of all the other at-
tribute classes (including EPiServer.Editor.EditorPlugInAttribute, which will be
discussed later). You should make sure to always add pertinent contents to the
DisplayName attribute, as those contents will always be displayed in EPiServer
Admin mode or Edit mode

Following what has become Microsoft .NET development tradition, you can
enter the class name when used in the source file either as ‘PlugInAttribute’ or in
its short form as ‘PlugIn’. This is also true for all classes which inherit EPiServer
.PlugIn.PlugInAttribute.

ActionWindow Item in listing in the Action window in EPiServer Edit mode, see
figure 13-2.

EditPanel A custom tab item on the Edit mode edit panel tab strip, see fig-
ure 13-2.

EditTree A custom tab item on the Edit mode Edit Tree tab strip, see fig-
ure 13-2.

SystemSettings A custom tab item on the EPiServer Admin mode System set-
tings tab strip, see figure 13-1.

AdminMenu A custom menu item on the Admin mode menu in the Tools sec-
tion, see figure 13-1.

Table 13-4: Members on the enumeration EPiServer.PlugIn.PlugInArea.

Member Name Description

Table 13-5: Public properties for EPiServer.PlugIn.PlugInAttribute.

Property Name Description

Description Balloon help text or, in the case of an Action window plug-in, a
description line following the menu item line.

DisplayName Tab name, menu entry name, etc.

LanguagePath Path to node in language files where translation can be found
271

EPiServer.PlugIn Name Space
EPiServer.PlugIn.GuiPlugInAttribute

Public Properties for GuiPlugInAttribute

Public Methods for GuiPlugInAttribute

More Information on the GuiPlugInAttribute

GuiPlugInAttribute extends its mother class, EPiServer.PlugIn.PlugInAttribute,
with two properties and one method. Correctly using both properties is para-
mount to the successful deployment of this group of plug-ins.

EPiServer.PlugIn.GuiPlugInAttribute.Area

The Area property describes to EPiServer where this plug-in is to be utilised.
There are five different places in which a plug-in can be employed, described
above for enumeration PlugIn.PlugInArea.

EPiServer.PlugIn.GuiPlugInAttribute.Url

Acting as a file locator property the Url property, points to the main file of the
Web Form or Web User Control implementing the plug-in. There are only two
file extensions expected in the contents of Url – ‘ascx’ or ‘aspx’. Moreover, in
only one instance is the file extension ‘aspx’ and that’s when you’re creating a
plug-in for the Tools section of the EPiServer Admin mode menu. In this case,
Area is set to AdminMenu.

Table 13-6: Public properties for EPiServer.PlugIn.GuiPlugInAttribute.

Property Name Description

Area The area this plug-in supports; one of the members in the EPi-
Server.PlugIn.PlugInArea enumeration.

Url The URL for the resource file (Web User Form or Web User Con-
trol) according to specification Area.

Table 13-7: Public methods for EPiServer.PlugIn.GuiPlugInAttribute.

Method Name Description

Match Overridden. When overridden in a derived class, returns a value
indicating whether this instance equals a specified object.
272

13. Extending EPiServer
EPiServer.PlugIn.PageDefinitionTypePlugInAttribute

Public Methods

EPiServer.PlugIn.PlugInDescriptor

Public Properties

Public Methods

EPiServer.PlugIn.PlugInLocator

Public Methods

Table 13-8: Public methods for EPiServer.PlugIn.PageDefinitionTypePlugInAttribute.

Method Name Description

Start Auto-start method which is called upon application startup

Table 13-9: Public properties for EPiServer.PlugIn.PlugInDescriptor.

Property Name Description

AssemblyName The name of the assembly

ID The identifier assigned by EPiServer to this plug-in

PlugInType The System.Type for the plug-in

TypeName The name of the class.

Table 13-10: Public methods for EPiServer.PlugIn.PlugInDescriptor.

Method Name Description

Create Create an instance of the plug-in

GetAttribute Get a plug-in attribute of a special type.

GetAttributeArray Get all PlugInAttribute of a given type from an array of Plug-
InDescriptor.

GetAttributes Get all plug-in attributes.

Load Overloaded. Load plug-in information based on a plug-in ID.

Table 13-11: Public methods for EPiServer.PlugIn.PlugInLocator.

Method Name Description

FindPlugInAttributes Search for unique plug-in attribute classes.
273

Plug-Ins for the ActionWindow (EPiServer Edit Mode)
EPiServer.PlugIn.PlugInSettings

Public Methods

EPiServer.PlugIn.ScheduledPlugInAttribute

Public Properties

Plug-Ins for the ActionWindow (EPiServer Edit Mode)

Unlike the other extensibility areas, as you will see later, the Action window has
duties which do not directly deal with the Web Page Tree. To view the Action
window, open Edit mode and click on the Open Action window tool-bar button,

.

Figure 13-4: Edit mode Action window.

Search Overloaded. Search for plug-ins.

Table 13-11: Public methods for EPiServer.PlugIn.PlugInLocator.

Method Name Description

Table 13-12: Public methods for EPiServer.PlugIn.PlugInSettings.

Method Name Description

Populate Populate DataSet with data for plug-in

Save Save DataSet with settings to database.

Table 13-13: Public properties for EPiServer.PlugIn.ScheduledPlugInAttribute.

Property Name Description

HelpFile The help page to display for the job.
274

13. Extending EPiServer
Simple Plug-In for the Action Window

Following these steps will guarante that you will end up with a plug-in for the Ac-
tion window.

1. In Visual Studio .NET, right-click on the current project name, select Add
and then ‘Add Web User Control’.

2. Name this Web User Control ‘ActionWindowSimpleton’.

3. Switch to HTML mode and enter the text: ‘Hello Action window!’.

4. Open the code-behind file and add the all-important GuiPlugInAttribute

Example 13-1: The GuiPlugInAttribute for ActionWindowSimpleton.

[EPiServer.PlugIn.GuiPlugIn(DisplayName="ActionWindowSimpleton",

Description="Action window simpleton plug-in",

Area=EPiServer.PlugIn.PlugInArea.ActionWindow,

Url="~/ActionWindowSimpleton.ascx")]

public class ActionWindowSimpleton : System.Web.UI.UserControl {

5. Compile and run.

6. Open EPiServer Edit mode and then the Action window, which should look
something like this:

Figure 13-5: ActionWindowSimpleton plug-in in the Action window.

7. Clicking on the ActionWindowSimpleton link should produce this salutation:

Figure 13-6: ActionWindowSimpleton plug-in open.

From figure 13-5, you can deduce how to use the GuiPlugIn attribute properties
DisplayName and Description. The contents of both DisplayName and Descrip-
tion are shown on the first page of the Action window – make them helpful to
the person using the Action window.
275

Plug-Ins for the ActionWindow (EPiServer Edit Mode)
Create a Live Clock Plug-In for the Action Window

You might have seen this example plug-in before. It is the same plug-in that you
can find in the EPiServer Open Development Architecture white paper. The
plug-in creates a clock in the action window. Using a small JavaScript, the plug-
in continuously displays the time.

Create the Web User Control ActionWindowClock

To set things rolling, we create a new Web User Control and call it ActionWin-
dowClock.

The HTML Part for ActionWindowClock

All the action will be in the HTML part, which is not uncommon for plug-ins.
We add the JavaScript in 13-2.

Example 13-2: The JavaScript to add to the HTML part of ActionWindowClock.

<script Language="JavaScript">

function ShowTime() {

var time = new Date()

var hour = time.getHours()

var minute = time.getMinutes()

var second = time.getSeconds()

var temp = "" + ((hour < 10) ? "0" : "") + hour

temp += ((minute < 10) ? ":0" : ":") + minute

temp += ((second < 10) ? ":0" : ":") + second

document.getElementById("ShowTime").innerHTML = temp

id = setTimeout("ShowTime()", 1000)

}

</script>

<div id="ShowTime"></div>

<script>ShowTime()</script>

The Code-Behind File for ActionWindowClock

Example 13-3: The code-behind file for ActionWindowClock Web User Control.

namespace development {

[EPiServer.PlugIn.GuiPlugIn(DisplayName="Clock", Description="Shows the time in 24 hr format",

Area=EPiServer.PlugIn.PlugInArea.ActionWindow, Url="~/ActionWindowClock.ascx")]

public abstract class ActionWindowClock : System.Web.UI.UserControl {

…

}

}

276

13. Extending EPiServer
Nothing much happens in the code-behind file, the only important thing is the
presence of the GuiPlugIn attribute and its attributes which correctly identify the
Web User Control as an Action window plug-in.

Figure 13-7: ActionWindowClock plug-in: on the left in the Action window menu, on the right in action.

Plug-Ins for the Edit Panel Tab Strip (EPiServer Edit Mode)

Extending the Edit panel tab strip is ideal for extensions which deal with single
Web pages, the Web currently being handled in Edit mode.

Very Simple Edit Panel Tab Strip Extension

1. In Visual Studio .NET, right-click on the current project name, select Add
and then ‘Add Web User Control’.

2. Name this Web User Control ‘EditPanelSimpleton’.

3. Switch to HTML mode and enter the text: ‘Hello Edit panel tab strip!’.

4. Open the code-behind file and add the all-important GuiPlugInAttribute

Example 13-4: The GuiPlugInAttribute for EditPanelSimpleton.

[EPiServer.PlugIn.GuiPlugIn(DisplayName="EditPanelSimpleton",

Description="EditPanelSimpleton is a simple plug-in for the Edit panel tab strip",

Area=EPiServer.PlugIn.PlugInArea.EditPanel, Url="~/EditPanelSimpleton.ascx")]

public class EditPanelSimpleton : System.Web.UI.UserControl {

5. Compile and run.

6. Open EPiServer Edit mode, click on one of the Web Pages and then look at
the right pane. It should look something like this:

Figure 13-8: EditPanelSimpleton plug-in in the Edit Panel tab strip.
277

Plug-Ins for the Edit Panel Tab Strip (EPiServer Edit Mode)
7. Clicking on the EditPanelSimpleton tab should produce this salutation:

Figure 13-9: EditPanelSimpleton plug-in open.

A Page Information Plug-In for the Edit Panel Tab Strip

As the Edit Panel Tab Strip is used for functions which deal with one page, let’s
create a plug-in which displays some pertinent information for the currently se-
lected page. Given the fact that plug-ins for the Edit panel tab strip will be Web
User Controls and our need to access page data effortlessly, we let the Web User
Control class inherit EPiServer.UserControlBase.

Create the Web User Control EditPanelPageInfo

A new Web User Control EditPanelPageInfo is created and named.

The HMTL Part of EditPanelPageInfo

The HTML part of EditPanelPageInfo looks like this:

Example 13-5: HTML part of EditPanelPageInfo.

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="EditPanelPageInfo.ascx.cs"

Inherits="development.EditPanelPageInfo"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5"%>

Page Information

<table>

<tr><td>Page Name:</td> <td><%= CurrentPage.PageName%></td></tr>

<tr><td>Created: </td> <td><%= CurrentPage.Created%></td></tr>

<tr><td>Created by:</td> <td><%= CurrentPage.CreatedBy%></td></tr>

<tr><td>Last changed:</td> <td><%= CurrentPage.Changed%></td></tr>

<tr><td>Last changed by:</td> <td><%= CurrentPage.ChangedBy%></td></tr>

</table>

As you’ll soon see, the class inherits EPiServer.UserControlBase and this enables
the simple use of CurrentPage which is seen in example 13-5. This time the code
render blocks do not use the special Data Expression Syntax, ‘<%#’, but rather
the more ordinary ‘<%=’ simply beacuse the HTML part is not enclosed in a
templated control or any other kind of data bound control.

The Code-Behind File for EditPanelPageInfo

Getting the GuiPlugIn attribute and its properties right is the only challenge pre-
sented by the code-behind file along with the class inheritance.
278

13. Extending EPiServer
Example 13-6: The code-behind file for EditPanelPageInfo.

namespace development {

/// <summary>EditPanelPageInfo displays page information, it's

/// a plug-in for the Edit panel tab strip.</summary>

[EPiServer.PlugIn.GuiPlugIn(DisplayName="EditPanelPageInfo",

Description="EditPanelPageInfo displays page information (plug-in for the Edit panel tab strip)",

Area=EPiServer.PlugIn.PlugInArea.EditPanel, Url="~/EditPanelPageInfo.ascx")]

public class EditPanelPageInfo : EPiServer.UserControlBase {

…

}

}

Using the Plug-In

When the EditPanelPageInfo plug-in is executed, the results look like this.

Figure 13-10: EditPanelPageInfo plug-in at work.

Plug-Ins for the EditTree Tab Strip (EPiServer Edit Mode)

Choosing to extend either the Edit Panel area or the Edit Tree area is a rather easy
decision to make.

Plug-ins in the Edit Panel area should deal with a single page, the selected
page (see the earlier section).

Plug-ins in the Edit Tree area can handle the whole Web Page Tree or other
system- wide settings (system-wide from the Editor point of view); its area of
interest is confined to the left pane in the Edit mode.

Creating a Simple Plug-In for the EditTree Tab Strip

These are the steps to follow when creating plug-ins for the EditTree tab strip.

1. In Visual Studio .NET, right-click on the current project and select first Add
and then ‘Add Web User Control’.

2. Name this Web User Control ‘EditTreeSimpleton’.

3. Switch to HTML mode and enter the text: ‘Hello Edit Tree tab strip!’.

4. Open the code-behind file and add the all-important GuiPlugInAttribute
279

Plug-Ins for the EditTree Tab Strip (EPiServer Edit Mode)
Example 13-7: The GuiPlugInAttribute for EditTreeSimpleton.

[EPiServer.PlugIn.GuiPlugIn(DisplayName="EditTreeSimpleton",

Description="Edit Tree tab strip simpleton plug-in",

Area=EPiServer.PlugIn.PlugInArea.EditTree,

Url="~/EditTreeSimpleton.ascx")]

public class EditTreeSimpleton : System.Web.UI.UserControl {

5. Compile and run.

6. Open EPiServer Edit mode. The Edit Tree tab strip should look something
like this:

Figure 13-11: EditTreeSimpleton plug-in in the Edit Tree tab strip.

7. Clicking on the EditTreeSimpleton tab should produce this salutation:

Figure 13-12: EditTreeSimpleton plug-in open.

The complete Web User Control is presented next.

Example 13-8: HTML part of EditTreeSimpleton.

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="EditTreeSimpleton.ascx.cs"

Inherits="development.EditTreeSimpleton"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5"%>

Hello Edit Tree tab strip!

Create a ‘My Pages’ Edit Tree Extension

In an environment where many Editors create Web pages, it can be useful to have
a way of dealing only with the pages created by a single editor, e.g. the logged-on
user.
280

13. Extending EPiServer
Again we’ll turn to FindPagesWithCriteria for assistance in selecting the pages
whichs were created by the currently logged-on user account. If you look at the
specification for EPiServer.Core.PageData, you’ll find just the property we need,
CreatedBy. As we are going to use FindPagesWithCritiera, the property Created-
By will be specified as ‘PageCreatedBy’. Prepending ‘Page’ to PageData proper-
ties is typical when you handle properties via EPiServer.WebControls.Property
or, as in this case, FindPageWithCriteria. (Should you fail to find the ‘Page’ alias
for a certain PageData property, just prepend ‘Page’ and it should work.)

ExplorerTree (EPiServer.WebControls.ExlporerTree) is the ideal control for
the job, and yet it’s not perfect. ExplorerTree is the easiest control to use which
lets us preserve the Edit mode functionality of being able to click the page name
and have it presented in the right pane for further processing. At the same time,
EplorerTree fails to present the pages hierarchically if some are missing (small
wonder). For this example, we’ll accept this small drawback.

Create the Web User Control EditTreeMyPages

First we create a new Web User Control and name it EditTreeMyPages.

HTML Part

Example 13-9: HTML Part of EditTreeMyPages.ascx.

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="EditTreeMyPages.ascx.cs"

Inherits="development.EditTreeMyPages"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5"%>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<EPiServer:ExplorerTree EnableVisibleInMenu="False" ShowRootPage="False"

ShowIcons="False" ClickScript="window.parent.navigateEvent(window, '{ PageLink }');"

id="MyPages" runat="server"

/>

Now, isn’t that the perfect size for the HTML part of a Web User Control – just
three HTML code lines! A lot of things must happen out of sight for this to work.

A very important part of the ExplorerTree is the attribute ClickScript. The
contents of this attribute, ‘window.parent.navigateEvent(window, '{ PageLink }'
);’, were borrowed from the Edit mode Structure tab. It’s this script which is re-
sponsible for sending the selected page to the right pane of Edit mode.

Code-Behind File for Web User Control EditTreeMyPages

There should be no surprises in the code-behind file for EditTreeMyPages.

Example 13-10: Code-Behind File for Web User Control EditTreeMyPages

namespace development {

/// <summary>EditTreeMyPages list only the pages the current user has

/// created, in a PageTree control.</summary>
281

Plug-Ins for the EditTree Tab Strip (EPiServer Edit Mode)
[EPiServer.PlugIn.GuiPlugIn(DisplayName="My Pages",

Description="List only the Web pages you've created",

Area=EPiServer.PlugIn.PlugInArea.EditTree,

Url="~/EditTreeMyPages.ascx")]

public class EditTreeMyPages : System.Web.UI.UserControl {

protected EPiServer.WebControls.ExplorerTreeMyPages;

private void Page_Load(object sender, System.EventArgs e) {

EPiServer.PropertyCriteriaCollection CurrentUserCriteria =

new EPiServer.PropertyCriteriaCollection();

EPiServer.PropertyCriteria CurrentUserCriterion = new EPiServer.PropertyCriteria ();

CurrentUserCriterion.StringCondition = EPiServer.Filters.StringCompareMethod.Identical;

CurrentUserCriterion.Type = EPiServer.Core.PropertyDataType.String;

CurrentUserCriterion.Name = "PageCreatedBy";

CurrentUserCriterion.Value =

EPiServer.Security.UnifiedPrincipal.Current.UserData.DisplayName;

CurrentUserCriterion.Required = true;

CurrentUserCriteria.Add(CurrentUserCriterion);

MyPages.DataSource = EPiServer.Global.EPDataFactory.FindPagesWithCriteria(

EPiServer.Global.EPConfig.RootPage, CurrentUserCriteria);

MyPages.DataBind();

}

…

}

}

Figure 13-13: Web User Control EditTreeMyPages at work.
282

13. Extending EPiServer
Extending the Extension

Since we are using FindPagesWithCriteria and building our own PageDataCollec-
tion (EPiServer.Core.PageDataCollection), we can add any processing we choose
before handing off the collection to the ExplorerTree control.

In cases where single editors are responsible for a whole sub-tree, ExplorTree
should be fine.

Plug-Ins for the System Settings Area of EPiServer Admin Mode

Being number four in a litter of five cannot be easy, but the System settings area
of EPiServer Admin mode is still very handy for some plug-ins. To demonstrate,
we’ll create a plug-in to list and edit the settings in the appSettings section of the
web.config file, but first we’ll create the simplest possible System settings area
plug-in.

Simplest Possible System Settings Area Plug-In

To create any plug-in for the System settings area, follow these first steps.

1. In Visual Studio .NET, right-click on the current project and select first Add
and then ‘Add Web User Control’.

2. Name this Web User Control ‘SystemSettingsSimpleton’.

3. Switch to HTML mode and enter the text: ‘Hello System settings!’.

4. Open the code-behind file and add the all-important GuiPlugInAttribute

Example 13-11: The GuiPlugInAttribute for SystemSettingsSimpleton.

[EPiServer.PlugIn.GuiPlugIn(DisplayName="Simpleton",

Description="System settings simpleton plug-in",

Area=EPiServer.PlugIn.PlugInArea.SystemSettings,

Url="~/SystemSettingsSimpleton.ascx")]

public class SystemSettingsSimpleton : System.Web.UI.UserControl {

5. Compile and run.

6. Open EPiServer Admin mode, click on System settings in the right pane.
283

Plug-Ins for the System Settings Area of EPiServer Admin Mode
7. Your System setting right pane should look something like this:

Figure 13-14: SystemSettingsSimpleton plug-in in the System settings tab strip.

8. Clicking on the Simpleton tab should produce this salutation:

Figure 13-15: SystemSettingsSimpleton plug-in open.

The complete Web User Control is presented next.

Example 13-12: HTML part of SystemSettingsSimpleton.

<%@ Control Language="c#" AutoEventWireup="false"

Codebehind="SystemSettingsSimpleton.ascx.cs" Inherits="development.SystemSettingsSimpleton"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

Hello System settings!

Example 13-13: Code-behind file for SystemSettingsSimpleton.

namespace development {

/// <summary>SystemSettingsSimpleton is a very simpleton plug-in for

/// System settings area of Admin mode.</summary>

[EPiServer.PlugIn.GuiPlugIn(DisplayName="Simpleton",

Description="System settings simpleton plug-in",

Area=EPiServer.PlugIn.PlugInArea.SystemSettings,

Url="~/SystemSettingsSimpleton.ascx")]

public class SystemSettingsSimpleton : System.Web.UI.UserControl {

private void Page_Load(object sender, System.EventArgs e) {

// Put user code to initialize the page here

}

284

13. Extending EPiServer
…

}

Armed with the knowledge of how to create plug-ins for the System settings area,
we quickly move on to create a really useful one.

Web.config Editor for the System Settings Area in EPiServer Admin Mode

Remember that the appSettings section in the web.config file holds many inter-
esting settings for your EPiServer solution. Access to these settings is via EPiS-
erver.Global.EPConfig.ConfigFile (see page 161). In particular there’s a fast way
to get at all the settings in the appSettings section using the public property All-
AppSettings (EPiServer.Global.EPConfig.ConfigFile.AllAppSettings). It returns
a collection of settings name–settings value pairs (see page 161).

For presentation and visual support, we’ll use a templated control, the Data-
List (System.Web.UI.WebControls.DataList).

From the point of view of the DataList control (i.e. its DataSource property),
AllAppSettings return a string array (string[]) of all names of the settings found
in the appSettings section.

We boldly name this plug-in WebConfigEditor, although you might find it
lacking in some respects.

DataList Information

We will be using the DataList control both for presentation and as a means to
select items for editing as well as support during editing.

HTML Part of the Plug-In

The HTML part of the plug-in is straightforward, as we can rely on EPiServer
Admin mode to take care of many visual aspects for us.

Example 13-14: HTML part of System setting area plug-in WebConfigEditor.

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="WebConfigEditor.ascx.cs"

Inherits="development.WebConfigEditor"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<table border="0" cellpadding="1" cellspacing="1" width="100%">

<asp:DataList id="ConfigFileSettings" runat="server"

OnEditCommand="EditItem"

OnCancelCommand="CancelItem"

OnUpdateCommand="UpdateItem"

>

<ItemTemplate>

<tr>

<td><%# Container.DataItem.ToString() %></td>

<td><%# EPiServer.Global.EPConfig.ConfigFile.GetAppSetting(
285

Plug-Ins for the System Settings Area of EPiServer Admin Mode
Container.DataItem.ToString()) %></td>

<td><asp:Button Text="Edit" CommandName="Edit" runat="server" ID="edit" /></td>

</tr>

</ItemTemplate>

<EditItemTemplate>

<tr>

<td><asp:Label Text="<%# Container.DataItem.ToString() %>" runat="server"

ID="SettingNameInEditMode" /></td>

<td><asp:TextBox Text="<%# EPiServer.Global.EPConfig.ConfigFile.GetAppSetting(

Container.DataItem.ToString()) %>" runat=server ID="SettingValueInEditMode"

Width="100%" Font-Bold="True" /></td>

<td><asp:Button Text="Cancel" CommandName="Cancel" runat="server" ID="cancel" />

</td>

<td><asp:Button Text="Update" CommandName="Update" runat="server" ID="update" />

</td>

</tr>

</EditItemTemplate>

</asp:DataList>

</table>

Obviously we’re going for a tabular look where settings names go in the first col-
umn, the contents of the settings in the next column followed by one or two col-
umn containing Button objects.

The more interesting parts of the HTML code in example 13-14 have been
marked in bold face font.

The opening tag for the DataList control binds three commands to functions
in the code-behind file (DataList can handle five named commands: Cancel, De-
lete, Edit, Select and Update). (As there is no way from code tood deleting set-
tings in the appSettings section, we have no need for a Delete command.)

Two of DataList’s templates are used, ItemTemplate and EditItemTemplate.
Only the single item being edited will be rendered using the EditItemTemplate,
all the others adhere to the ItemTemplate.

In the EditItemTemplate, we use a Label and a TextBox control to render the
settings name and it value, respectively. The TextBox is used for the obvious pur-
pose of being able to edit the settings value. But why a Label control? It’s not
needed in ItemTemplate. Well, it is needed so we can read the name of the setting
in the code-behind file. Speaking of which, let’s turn our attention to the code-
behind file.

Code-Behind File for the Plug-In

Example 13-15: Code-behind file for System setting area plug-in WebConfigEditor.

namespace development {
286

13. Extending EPiServer
/// <summary>WebConfigEditor adds web.config editing tab to

/// EPiServer Admin mode, System settings.</summary>

[EPiServer.PlugIn.GuiPlugIn(DisplayName="web.config",

Description="web.config Settings Editor",

Area=EPiServer.PlugIn.PlugInArea.SystemSettings, Url="~/WebConfigEditor.ascx")]

public class WebConfigEditor : System.Web.UI.UserControl {

protectedSystem.Web.UI.WebControls.DataListConfigFileSettings;

private void Page_Load(object sender, System.EventArgs e) {

if (! IsPostBack) {

DataBind();

ConfigFileSettings.DataSource = EPiServer.Global.EPConfig.ConfigFile.AllAppSettings;

ConfigFileSettings.DataBind();

}

}

private void UpdateDataListDataBinding() {

ConfigFileSettings.DataSource = EPiServer.Global.EPConfig.ConfigFile.AllAppSettings;

ConfigFileSettings.DataBind();

}

public void EditItem(object sender, System.Web.UI.WebControls.DataListCommandEventArgs e)

{

ConfigFileSettings.EditItemIndex = e.Item.ItemIndex;

UpdateDataListDataBinding();

}

public void CancelItem(object sender,

System.Web.UI.WebControls.DataListCommandEventArgs e) {

ConfigFileSettings.EditItemIndex = -1;

UpdateDataListDataBinding();

}

public void UpdateItem(object sender,

System.Web.UI.WebControls.DataListCommandEventArgs e) {

EPiServer.Global.EPConfig.ConfigFile.SetAppSetting(

string SettingName = ((System.Web.UI.WebControls.Label) e.Item.FindControl(

"SettingNameInEditMode")).Text;

string SettingValue = ((System.Web.UI.WebControls.TextBox) e.Item.FindControl(

"SettingValueInEditMode")).Text;

EPiServer.Global.EPConfig.ConfigFile.SetAppSetting(SettingName, SettingValue);

EPiServer.Global.EPConfig.ConfigFile.Persist();

ConfigFileSettings.EditItemIndex = -1;

UpdateDataListDataBinding();

}

287

Plug-Ins for the System Settings Area of EPiServer Admin Mode
…

}

}

The code in example 13-15 should be easy to follow. Three of the functions are
the service functions for the DataList commands already mentioned (Edit, Can-
cel and Update). There’s one helper function UpdateDataListDataBinding,
which updates the DataList.DataSource property and then calls DataList.Data-
Bind.

Plug-In Class Attribute GuiPlugIn

Compared to other GuiPlugIn attributes, this one is just plain ordinary. The Dis-
playName property string shows up as a name on the new tab in the System set-
tings tab strip.

Function EditItem

Function EditItem has got it made; all it has to do is to set DataList.EditItemIn-
dex to the index of the currently selected item (chosen by clicking on the Edit
Button to the right of the setting in Admin mode).

For the DataList control, whenever EditItemIndex is set to a value in the al-
lowed range (0 to DataList.Items.Count – 1) the Item whose index is Data-
List.EditItemIndex will be rendered using the EditItemTemplate.

Function CancelItem

In our case the Cancel Button is used to escape out of settings edit mode so in
CancelItem DataList.EditItemIndex is set to –1, meaning no item will be ren-
dered using EditItemTemplate.

Function UpdateItem

In function UpdateItem, we need to retrieve the name of the setting being edited
as well as the new value for the setting. For this purpose, the ID of the ASP.NET
control objects used to render the setting name and its contents is used. That’s
why, in DataList Edit mode, the Label was given an ID of ‘SettingNameInEdit-
Mode’ and the TextBox an ID of ‘SettingValueInEditMode’.

The new setting value is written to the web.config file using EPiServer.Global
.EPConfig.ConfigFile.SetAppSetting, and, lastly, we call EPiServer.Global.EP-
Config.ConfigFile.Persist to convince EPiServer we really meant to save the new
setting.

Cancelling DataList Edit mode is the penultimate thing to happen in Update-
Item.
288

13. Extending EPiServer
Look (and Feel) of WebConfigEditor

Having successfully compiled WebConfigEditor, you open EPiServer Admin
mode and click on System settings in the left pane. In the right pane, there is now
a new tab in the tab strip.

Figure 13-16: WebConfigEditor plug-in in the System settings tab strip.

Clicking on the tab called ‘web.config’ lets us see the appSettings section of the
web.config file in all its glory.

Figure 13-17: WebConfigEditor plug-in open (screen dump has been trimmed).

Clicking on the Edit button ‘opens’ the edit mode for that particular setting.

Figure 13-18: Result of clicking on the Edit Button.

In Edit mode, you are free to enter whatever new value you wish for the setting.
Pressing Cancel negates any changes whilst clicking on Update writes the new
content to the web.config file.

Conclusion

Using very few lines of HTML and corresponding C# code, we’ve built ourselves
a complete WYSIWYG (What You See Is What You Get) editor for the appSet-
tings section in the web.config file. Quite impressive and a testament to the rich-
ness of the ASP.NET and EPiServer development environment. However, there
289

Plug-Ins for the AdminMenu (EPiServer Admin Mode)
are some obvious improvements we’d like you to consider implementing your-
self.

Improvements Left to the Reader

1. Add new setting. A button to add a new setting could either go in the
HeaderTemplate of the DataList control or outside the HTML table alto-
gether. Use EPiServer.Global.EPConfig.ConfigFile.SetAppSetting.

2. User entry control. For settings which adhere to the ‘EPxNomen’ naming
scheme, it would be a good idea to check user input. Use System.Boolean
.Parse and System.Int32.Parse, respectively.

3. Save current value of setting. You could save a few CPU cycles by saving the
current setting value, in a class-level string variable, as you enter Edit mode
(in EditItem) and then, in UpdateItem, compare the two values.

4. Read and display any settings comment from web.config using EPiServer
.Global.EPConfig.ConfigFile.GetComment. Could likely be done in a state-
ment very much like the existing way of reading the value, ‘<%# EPiServer
.Global.EPConfig.ConfigFile.GetComment(Container.DataItem.ToString()
) %>’

5. Don’t display settings which are controlled via other means.

6. Don’t display settings which should be considered read-only.

Plug-Ins for the AdminMenu (EPiServer Admin Mode)

The last of the GUI plug-ins go in the EPiServer Admin mode menu, in the left
pane under the Tools heading. A big difference between these extensions and the
other four under the GuiPlugIn umbrella is that plug-ins for the Admin mode
menu are Web Forms (aspx), not Web User Controls (ascx). Otherwise, they have
to abide by the same rules as the others, e.g. the Url property of the GuiPlugIn
attribute is equally important for AdminMenu plug-ins.

Very Simple Plug-In for the Admin Mode Menu

Now we have to be careful to make sure we create a Web Form to serve as an
Admin mode menu extension, otherwise it’s a lot like other GUI extensions.

1. In Visual Studio .NET, right-click on the current project and select first Add
and then ‘Add Web Form’.

2. Name this Web Form ‘AdminMenuSimpleton’.

3. Switch to HTML mode and enter the text: ‘Hello Admin mode menu!’,
inside the HTML form.
290

13. Extending EPiServer
4. Change the id property of the form to ‘AdminMenuSimpleton’ (the HTML
Title tag has automatically been set to ‘AdminMenuSimpleton’).

5. Open the code-behind file and add the all-important GuiPlugInAttribute
(remember that since the extension is a Web Form, the file extension is aspx.

Example 13-16: The GuiPlugInAttribute for AdminMenuSimpleton.

[EPiServer.PlugIn.GuiPlugIn(DisplayName="AdminMenuSimpleton",

Description="Admin Menu Simpleton", Area=EPiServer.PlugIn.PlugInArea.AdminMenu,

Url="~/AdminMenuSimpleton.aspx")]

public class AdminMenuSimpleton : System.Web.UI.Page {

6. Compile and then either start debugging and open EPiServer Admin mode
or switch to the browser and open Admin mode.

7. The Tools section should have a new addition.

Figure 13-19: AdminMenuSimpleton plug-in in the Admin menu, Tools section.

8. Clicking on the AdminMenuSimpleton link should produce this salutation in
the right pane:

Figure 13-20: AdminMenuSimpleton plug-in open.

Web Forms control their visual appearance themselves; this is the reason for the
all-default appearance of the open AdminMenuSimpleton Web form.

A Perhaps Useful Addition to the Admin Mode Menu

Knowing all there is to know about GUI plug-ins for EPiServer, we set out to
create a useful Admin mode menu extension. Our proposed extension is one that
displays a list of the Web pages created for the Web site during the last week. This
is the same list that we used in chapter 11, Job Scheduling, but this time we’ll use an
EPiServer templated control, PageList, to display information about the new pag-
es. FindPagesWithCriteria (Global.EPDataFactory) will be used to select the pag-
es.

Also, for this last GUI extension we’ll be presented with the small challenge
of making our contribution look like it was always present in EPiServer Admin
mode, from the point of view of visual appearance. Of course, in order to do this
in the most effective way, we’ll make sure we benefit from the visual infrastruc-
ture present in EPiServer. But, all in good time; first we’ll make the extension
work, then we can make it pleasing to the eye.
291

Plug-Ins for the AdminMenu (EPiServer Admin Mode)
Create the Web Form

First we create a new Web Form (remember, Admin mode menu extensions are
the only Web Form GUI plug-ins) and name it ‘AdminMenuRecentlyCreat-
edList’.

The HTML Part

In the HTML part, we add one line to make it possible to use control objects
from EPiServer.WebControls name space:

Example 13-17: Declaration of EPiServer.WebControls name space in the HTML part of the Web Form
AdminMenuRecentlyCreatedList.aspx.

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

The contents of the id property of the HTML Form tag are changed to ‘Admin-
MenuRecentlyCreatedList’. Inside the form we add the DataList parts.

Example 13-18: EPiServer.WebControls.DataList added to the Web Form
AdminMenuRecentlyCreatedList.aspx.

<table>

<EPiServer:PageList runat="server" ID="RecentlyCreatedPages">

<ItemTemplate>

<tr>

<td><%# Container.CurrentPage.Created.ToString("r") %></td>

<td><%# Container.CurrentPage.PageName %></td>

<td><%# Container.CurrentPage.CreatedBy %></td>

</tr>

</ItemTemplate>

</EPiServer:PageList>

</table>

The DataList control is embedded in an HTML table. Its name is set to Recently-
CreatedPages, as we use this in the code-behind file. Only the ItemTemplate (for
reasons which will become clear later) of the DataList control is used. An item is
made up of three pieces of information:

Date–time the page was created

Name of the page

Name of user account of creator

This is what the completed HTML part looks like.

Example 13-19: Complete HTML part of AdminMenuRecentlyCreatedList.aspx.

<%@ Page language="c#" Codebehind="AdminMenuRecentlyCreatedList.aspx.cs"

AutoEventWireup="false" Inherits="development.AdminMenuRecentlyCreatedList" %>
292

13. Extending EPiServer
<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

<head>

<title>AdminMenuRecentlyCreatedList</title>

<meta content="Microsoft Visual Studio .NET 7.1" name="GENERATOR">

<meta content="C#" name="CODE_LANGUAGE">

<meta content="JavaScript" name="vs_defaultClientScript">

<meta content="http://schemas.microsoft.com/intellisense/ie5" name="vs_targetSchema">

</head>

<body MS_POSITIONING="FlowLayout">

<form id="AdminMenuRecentlyCreatedList" method="post" runat="server">

<table>

<EPiServer:PageList runat="server" ID="RecentlyCreatedPages">

<ItemTemplate>

<tr>

<td><%# Container.CurrentPage.Created.ToString("r") %></td>

<td><%# Container.CurrentPage.PageName %></td>

<td><%# Container.CurrentPage.CreatedBy %></td>

</tr>

</ItemTemplate>

</EPiServer:PageList>

</table>

</form>

</body>

</html>

The Code-Behind File

The code-behind file shouldn’t present any major obstacles. We have to get the
GuiPlugIn attribute right. It’s OK to let the class inherit from System.Web.UI
.Page, but if necessary, you can let the class inherit from EPiServer.SystemPage,
EPiServer.SimplePage or any other class in the EPiServer.PageBase inheritance
chain.

Example 13-20: Code-behind file for Web Form AdminMenuRecentlyCreatedList.

namespace development {

/// <summary>AdminMenuRecentlyCreatedList extends the Admin mode

/// menu Tools section with 'Recent pages' choice (see DisplayName).

/// </summary>

[EPiServer.PlugIn.GuiPlugIn(DisplayName="Recent pages", Description="Recently created pages",

 Area=EPiServer.PlugIn.PlugInArea.AdminMenu, Url="~/AdminMenuRecentlyCreatedList.aspx")]

public class AdminMenuRecentlyCreatedList : System.Web.UI.Page {

protected EPiServer.WebControls.PageListRecentlyCreatedPages;
293

Plug-Ins for the AdminMenu (EPiServer Admin Mode)
private void Page_Load(object sender, System.EventArgs e) {

if (! IsPostBack) {

EPiServer.PropertyCriteriaCollection RecentlyCreatedCriteria =

new EPiServer.PropertyCriteriaCollection();

EPiServer.PropertyCriteria RecentlyCreatedCriterion = new EPiServer.PropertyCriteria ();

RecentlyCreatedCriterion.Condition = EPiServer.Filters.CompareCondition.GreaterThan;

RecentlyCreatedCriterion.Type = EPiServer.Core.PropertyDataType.Date;

RecentlyCreatedCriterion.Name = "PageCreated";

RecentlyCreatedCriterion.Value = System.DateTime.Now.Date.AddDays(-7).ToString();

RecentlyCreatedCriterion.Required = true;

RecentlyCreatedCriteria.Add(RecentlyCreatedCriterion);

RecentlyCreatedPages.DataSource =

EPiServer.Global.EPDataFactory.FindPagesWithCriteria(

Global.EPConfig.RootPage, RecentlyCreatedCriteria);

RecentlyCreatedPages.DataBind();

}

}

…

}

}

Compiling the project and then opening EPiServer Admin mode reveals a new
addition to the Admin mode menu Tools section.

Figure 13-21: Admin mode menu Tools section with new menu choice ‘Recent pages’.

Clicking the link ‘Recent pages’ serves up a nice list of recently created pages and
some pertinent page information.

Figure 13-22: Result of running AdminMenuRecentlyCreatedList Web Form.

But, and this is big visual but, it certainly looks very odd with the all-default
HTML page in the midst of this slick environment. We have to do something
294

13. Extending EPiServer
about this. Luckily, help is close at hand. Peeking into another Web Form used
in Admin mode, we spot an interesting looking line in the header.

Example 13-21: Style sheet specification line on the header of an Admin mode Web Form.

<link href="../util/styles/system.css" type="text/css" rel="stylesheet">

We’ll borrow this line (see example 13-21) for our Admin mode Web Form. But,
beware, here be dragons! Unless we change the relative path statement in the con-
tents of the href attribute, the style sheet won’t be picked up and we’ll be none
the wiser as to why. In this particular case, the Web Form was saved in the root
folder of our Web project so this is the line we add to AdminMenuRecentlyCre-
atedList .aspx.

Example 13-22: Style sheet specification added to the header section of AdminMenuRecentlyCreatedList.aspx.

<link href="Util/styles/system.css" type="text/css" rel="stylesheet">

Recompiling and running AdminMenuRecentlyCreatedList, there are no com-
plaints about the artistic impression, it’s 6.0 all around. While we’re at it, we’ll add
a few more bits of information and visual pleasantries. For example we spotted
in the standard Admin mode Web Form that it used two classes from the style
sheet: EP-systemHeading and EP-systemInfo. Using these and introducing a
footer template section for the PageList produces this completed look for the
AdminMenuRecentlyCreatedList Web Form.

Figure 13-23: Final visual appearance of AdminMenuRecentlyCreatedList.

The HTML part wasn’t changed very much.

Example 13-23: Finalised HTML part for AdminMenuRecentlyCreatedList.aspx.

<%@ Page language="c#" Codebehind="AdminMenuRecentlyCreatedList.aspx.cs"

AutoEventWireup="false" Inherits="development.AdminMenuRecentlyCreatedList" %>

<%@ Register TagPrefix="EPiServer" Namespace="EPiServer.WebControls" Assembly="EPiServer" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

<head>

<title>AdminMenuRecentlyCreatedList</title>

<meta content="Microsoft Visual Studio .NET 7.1" name="GENERATOR">

<meta content="C#" name="CODE_LANGUAGE">
295

Elementary Troubleshooting of GUI Plug-Ins
<meta content="JavaScript" name="vs_defaultClientScript">

<meta content="http://schemas.microsoft.com/intellisense/ie5" name="vs_targetSchema">

<link href="Util/styles/system.css" type="text/css" rel="stylesheet">

</head>

<body MS_POSITIONING="FlowLayout">

<h1 class="EP-systemHeading">Recently Created Pages</h1>

Pages Created since

<%= System.DateTime.Now.Date.AddDays(-7) %>

<form id="AdminMenuRecentlyCreatedList" method="post" runat="server">

<table>

<EPiServer:PageList runat="server" ID="RecentlyCreatedPages">

<ItemTemplate>

<tr>

<td><%# Container.CurrentPage.Created.ToString("r") %></td>

<td><%# Container.CurrentPage.PageName %></td>

<td><%# Container.CurrentPage.CreatedBy %></td>

</tr>

</ItemTemplate>

<FooterTemplate>

<tr bgcolor="Gray" height="1px"><td colspan="3"></td></tr>

<tr>

<td colspan="3">

<%# RecentlyCreatedPages.DataCount %> page(s) found.</td>

</tr>

</FooterTemplate>

</EPiServer:PageList>

</table>

</form>

</body>

As can be seen in example 13-23, the reason we introduce the FooterTemplate
for the PageList control is to be able to display the number of pages found in the
search. The first table row in the FooterTemplate section is used to produce the
horizontal grey line seen in figure 13-23.

Elementary Troubleshooting of GUI Plug-Ins

Some mistakes are unique to EPiServer plug-ins, two of which are presented
here.

1. Letting plug-in class inherit from the incorrect mother class, e.g. letting a
plug-in for the System setting area inherit from anything but ‘System.Web.UI
.Control’ (or a descendant class, such as EPiServer.UserControlBase) pro-
296

13. Extending EPiServer
duces the message ‘Only UserControl objects are supported on a tabstrip’
when opened in EPiServer Admin mode.

2. Forgetting to name the plug-in in the GuiPlugIn attribute’s Url property. Fail-
ing to do so produces the message ‘User control source files must have a
.ascx file extension.’ for a System settings area plug-in when attempting to
open it.

Extending the DHTML Editor

The DHTML Editor is automatically invoked in Edit mode, or quick-edit mode,
to enable editing of properties/values of the type ‘Long string (>255)’. Consider-
ing the fact that the bulk of text on a Web site is likely to be held in that kind of
property/value and the number of people using the DHTML Editor, it’s easy to
envisage the need for extensibility in the DHTML Editor.

As editors in general are not good candidates for any client–server processing,
you will find that the extensibility model of the DHTML Editor relies on a com-
bination of server code and client scripts, written in Microsoft’s JavaScript (EC-
MAScript). In short, the server code is used to set up all that’s needed so the client
script is able to process whatever is entered in the editor.

When extending the DHTML Editor, we switch names spaces to EPiServ-
er.Editor and the plug-in attribute to use is now EditorPlugInAttribute. There’s
another big change – DHTML Editor plug-ins are neither Web Forms nor Web
User Controls, they are regular C# classes (or Visual Basic .NET classes, for that
matter). The reason for this is that the DHTML Editor in itself is a highly visual
component; the plug-ins you create are tools to supplement its own functions.

Figure 13-24: The DHTML Editor for LongString properties/values.

An interesting aspect of DHTML Editor plug-ins is that they do not have to be
created in the same Visual Studio .NET Solution as the main Web site. If you cre-
ate them in their own solutions, you may have as many solutions as you have
plug-ins. Be sure to either have the resulting DLLs created in the bin folder of the
main solution or copied to this folder. (It’s probably best to go for the file copy
297

Extending the DHTML Editor
options – it’s less messy.) If you have access to Visual Studio .NET 2003, you can
create Web Control Libraries as separate projects.

EPiServer.Editor.EditorPlugInAttribute Class

The class EditorPlugInAttribute inherits directly from EPiServer.PlugIn.Gui-
PlugInAttribute. Properties and methods declared for GuiPlugInAttribute, or
higher in the inheritance chain, are not listed in the tables below.

Of the mother class properties, DisplayName is still very important and you
should assign DisplayName the same importance as for the plug-ins discussed
earlier in this chapter.

Public Properties for EditorPlugInAttribute

Table 13-14: Public properties for EditorPlugInAttribute.

Property Name Description

CommandIdentifier DHTML command identifier which the tool can react to. If
for example the identifier ‘Bold’ is selected, the tool will tog-
gle between on and off in tool-bars and menus when the cur-
sor moves around in the editor body.

LanguageKey Used to handle translation of tool tips

LanguageKeyMenu Used to handle translation of texts in the context menu

MenuGroup The name of the menu group in which the plug-in will
appear. All plug-ins which have the same group and menu
names share the same group in the same menu. The plug-ins
in the group are sorted by their MenuIndex. If the group
name is empty, the plug-in will show up outside the groups
in a position defined by the MenuIndex. When sorting
groups, the plug-ins with the lowest MenuIndex in each
group are used as the sort keys.

MenuIndex Position in the menu. If the plug-in belongs to a menu
group, the position is within the group.

MenuName The name of the menu in which the plug-in will appear. If
the menu name is empty, the plug-in will appear in the top
menu.

MenuSortKey Complex sort key consisting of period-separated keys, for-
mat: ‘SubMenuName.MenuGroup.MenuIndex’. Non-empty
keys are always prefixed with an underscore, ‘_’. Empty keys
are always set to ‘x’, which guarantees that the non-empty
keys are always sorted before empty keys.
298

13. Extending EPiServer
Public Methods for EditorPlugInAttribute

EPiServer.Editor.ToolUsage Enumeration

The ToolUsage enumeration is used by the Usage property of the EditorPlugIn
attribute to specify which part of the DHTML Editor the plug-in is extending.

SubMenuName The name of an optional sub menu which will be opened
when the mouse pointer is positioned over this plug-in in the
menu.

ToolbarIndex Determines where on the tool-bar the plug-in should be dis-
played. If not specified, the plug-in will be displayed on the
far left on the tool-bar. A high value ToolbarIndex causes the
plug-in to be displayed on the far right of the tool-bar area.

Usage One or more of the members in the EPiServer.Editor.Tool-
Usage enumeration (see below). The enumeration members
may be Or’ed together.

Table 13-15: Public methods for EditorPlugInAttribute.

Method Name Description

IsUsage Check whether one or more ToolUsage flags are enabled on this
object. The flags can be Or’ed before the check.

Match Overridden.

Table 13-14: Public properties for EditorPlugInAttribute.

Property Name Description

Table 13-16: Members in the ToolUsage Enumeration.

Member Name Description

None Plug-in has no visual presence.

Toolbar Plug-in extends the DHTML Editor tool-bar.

ContextMenu Plug-in extends the shortcut (right-click) menu.

Keyboard Plug-in is attached to a keyboard shortcut (not yet supported).

All Shorthand for ‘ToolBar | ContextMenu | Keyboard’.
299

Extending the DHTML Editor
EPiServer.Editor.Tools.ToolBase Class

Extension classes for DHTML Editor plug-ins must inherit the EPiServer.Editor
.Tools.ToolBase class. This is the mother class to a lot of classes, some of which
we will acquaint ourselves with in this section.

Public Properties for ToolBase

Table 13-17: Public properties for ToolBase.

Property Name Description

Availability Gets or sets the modes which the tool supports in the editor.

ClientScriptBlock Gets or sets the client-side script block to register with the
tool.

ClientScriptKey Gets or sets the key which will be used when registering the
client-side script on the aspx page.

ClientSideEnabled Gets or sets the client-side javascript method(s) which will
be used to determine if the tool is currently enabled or not.

ClientSideOnClick Gets or sets the client-side javascript method(s) which will
be used in the OnClick attribute of the icon.

Disabled Gets or sets value indicating whether you want the tool to be
rendered in the toolbar.

Height Gets or sets the height of the icon.

IconOff Gets or sets the image name when the icon is off.

IconOver Gets or sets the image name when the icon is over.

Label Gets or sets the label to use for the tool.

MenuLabel Gets or sets the label to use in context menus for the tool.

Name Gets or sets the unique name of the tool.

ParentEditor Gets or sets the ParentEditor reference.

ResourceJsName Gets or sets the resource name for the Client-Side API Java-
Script file of the tool.

StartupScriptBlock Gets or sets the startup client-side script to register with the
tool.
300

13. Extending EPiServer
Protected Methods for ToolBase

EPiServer.Editor.Tools.IInitializableTool Interface

This interface is implemented by plug-ins which need to perform setup process-
ing, such as initialisations, client-side scripts handling, attaching to events and
more. There is a single method in this interface, Initialize. Any processing which
your plug-in needs is put in this method.

Example 13-24: EPiServer.Editor.Tools.IInitializableTool.Initialize function.

void Initialize(EPiServer.Editor.HtmlEditor editor);

The ‘editor’ argument passed to the function is the DHTML Editor.

A Skeleton DHTML Editor Extension Plug-In

The class listed in example 13-25 is a complete DHTML Editor extension plug-
in. It compiles OK and when you open EPiServer Edit mode you will see the text
‘DhtmlEditorSkeleton’ (the contents of the attribute DisplayName) in the tool-
bar area.

Example 13-25: Skeleton DHTML Editor extension plug-in.

namespace development {

[EPiServer.Editor.EditorPlugIn(DisplayName="DhtmlEditorSkeleton",

Usage=EPiServer.Editor.ToolUsage.Toolbar)]

public class DhtmlEditorSkeleton : EPiServer.Editor.Tools.ToolBase {

public DhtmlEditorSkeleton() {

}

}

}

StartupScriptKey Gets or sets the key which will be used when registering the
startup client-side script on the ASPX page.

Width Gets or sets the width of the icon.

Table 13-18: Protected methods for ToolBase.

Method Name Description

RenderTool Renders the tool to the specified HtmlTextWriter object.
Usually a Page.

Table 13-17: Public properties for ToolBase.

Property Name Description
301

Extending the DHTML Editor
So, a DHTML Editor plug-in needs to abide by only five rules:

1. It must be a class.

2. The class must inherit EPiServer.Editor.Tools.ToolBase.

3. It must have an EditorPlugIn attribute (EPiServer.Editor.EditorPlugIn).

4. The EditorPlugIn attribute must have a DisplayName property.

5. The EditorPlugIn attribute must have a Usage property.

Basic DHTML Editor Plug-In

To create a basic, really a dummy, plug-in for the DHTML Editor, follow these
steps.

1. In Visual Studio .NET, right-click on the current project name, select Add
and then ‘Add Class’.

2. Name this class ‘DhtmlEditorSimpleton’.

3. Add the all-important EditorPlugIn attribute

Example 13-26: The GuiPlugInAttribute for SystemSettingsSimpleton.

[EPiServer.Editor.EditorPlugIn(DisplayName="DhtmlEditorSimpleton",

Description="DhtmlEditorSimpleton extends the DHTML Editor tool-bar",

Usage=EPiServer.Editor.ToolUsage.Toolbar)]

4. Let the class inherit EPiServer.Editor.Tools.ToolBase.

Example 13-27: Class DhtmlEditorSimpleton inherits EPiServer.Editor.Tools.ToolBase.

public class DhtmlEditorSimpleton : EPiServer.Editor.Tools.ToolBase {

5. Add a client side script to the constructor for DhtmlEditorSimpleton.

Example 13-28: Client-side script in the constructor for DhtmlEditorSimpleton.

public DhtmlEditorSimpleton() {

ClientSideOnClick = "alert('Hello DHTML Editor!') ";

}

6. Compile, build, and run. Open EPiServer Edit mode, select a page contain-
ing a LongString property/value and activate the Edit tab in the right pane.
302

13. Extending EPiServer
(Or log on and select Quick-edit from the right-click menu, the shortcut
menu.) The DHTML Editor now has an addition to its tool-bar.

Figure 13-25: The DHTML Editor with the DhtmlEditorSimpleton plug-in visible in the tool-bar.

7. Clicking on the DhtmlEditorSimpleton tool-bar button produces this saluta-
tion:

Figure 13-26: DhtmlEditorSimpleton plug-in in action.

Congratulations! You now know how to create plug-ins for all the extensible ar-
eas of EPiServer. We do have a little more work to do before we conclude this
chapter though.

Before we move on, please take a moment to reflect on this skeleton plug-in
for the DHTML Editor. Minimal it may be, but it still demonstrates the dichot-
omy of the extensibility model. Server processing was used for setup and config-
uration, including configuring the client-side script ‘alert('Hello DHTML Editor!'
)’. The script is passed to the client upon instantiation of the object, in the con-
structor. Later, when the button is clicked, there is no server-side processing; eve-
rything happens on the client, as the script was bound to the ‘click event’ by
setting the property ClientSideOnClick to the JavaScript statement.

We will create two more plug-ins for the DHTML Editor. Actually they are
both variations on the same theme – you decide which you prefer.

The first plug-in will be made part both of the DHTML tool-bar and the con-
text menu (shortcut, right-click, menu) in the Editor. The second will not have
any visible part at all; it will act covertly, unbeknown to the user.

As for actions, both will convert some of the letters in the text entered in the
Editor into HTML entities, e.g. ‘æ’ into ‘æ’. Plug-in number one, the visible
one, will be made to toggle between actual letters and their HTML entity counter-
parts.
303

Extending the DHTML Editor
Both plug-ins will also be created outside your main Web site Visual Studio
.NET solution, and we’ll start by going over a few things you need to think about
when doing so.

Creating DHTML Editor Plug-Ins as Separate Visual Studio .NET Solutions

When you create DHTML Editor plug-ins in their own Visual Studio .NET So-
lutions, there are a few things to consider.

1. Create the plug-ins as ‘Class Library’ solutions.

2. Add EPiServer.dll from the correct EPiServer binaries daughter folder. (You
will find the correct folder as a daughter folder to ‘%ProgramFiles%\
EPiServer4\binaries\EPiServer’, its name is its version number.).

3. Add System.Web.dll (found in the list on the .NET tab when adding Refer-
ences).

4. Subsequent to the compile and build steps, copy the resulting library file to
the EPiServer Web site’s bin folder.

A Visible DHTML Editor Plug-In to Toggle between Letter and HTML Entity

For this plug-in, we’ll be introducing several new pieces of information, but fret
ye not, we’ll explain them all.

Folders Used

EPiServer has been set up so that the client-side DHTML Editor scripts go in the
folder Util\javascript\Editor folder and images to use for tool-bar button have
their home in the Util\images\Editor folder. With client-side Editor scripts and
images in their respective folders, you only have to specify files names in the code.

Create a New Class Library in Visual Studio .NET Solution

We start by creating a new Class Library solution in Visual Studio .NET. Its name
is set to ‘DhtmlEditorLetterToEntityVisible’ and both the class source file name
and the class itself are given this name.

Two references, for EPiServer and for System.Web, in the form of the library
files EPiServer.dll and System.Web.dll, are added.

Example 13-29: Source code for plug-in class DhtmlEditorLetterToEntityVisible.

namespace DhtmlEditorLetterToEntityVisible {

/// <summary>DhtmlEditorLetterToEntityVisible is a plug-in for the

/// DHTML Editor, converting letters to HTML entities, and back.

/// </summary>

[EPiServer.Editor.EditorPlugIn(DisplayName="Letter <-> HTML Entity",

Description="DhtmlEditorLetterToEntityVisible extends the DHTML Editor tool-bar",

Usage=EPiServer.Editor.ToolUsage.ContextMenu | EPiServer.Editor.ToolUsage.Toolbar)]
304

13. Extending EPiServer
public class DhtmlEditorLetterToEntityVisible : EPiServer.Editor.Tools.ToolBase,

EPiServer.Editor.Tools.IInitializableTool {

void EPiServer.Editor.Tools.IInitializableTool.Initialize(EPiServer.Editor.HtmlEditor editor){

ClientScriptBlock = editor.GetScriptTag("LetterToHtmlEntity.js");

ClientScriptKey = "LetterToHtmlEntity.js";

ClientSideOnClick = string.Format("ConvLetterToHtmlEntity('{0}');", editor.ClientID);

IconOff = "LetterToHtmlEntity_off.gif";

IconOver = "LetterToHtmlEntity_over.gif";

}

}

}

Perusing the code in example 13-29, several interesting pieces of information may
be noted:

The plug-in will be available both on the Editor tool-bar and in the shortcut
menu (‘Toolbar | ContextMenu’ is specified for the Usage property).

The plug-in also implements the interface IInitializableTool (EPiServer.Edi-
tor.Tools.IInitializableTool).

In the function EPiServer.Editor.Tools.IInitializableTool.Initialize, a client-
side script file is specified for ClientScriptBlock and also ClientScriptKey.

Which of the possible client-side script functions to execute when the user
clicks on the tool-bar button for DhtmlEditorLetterToEntityVisible, or
selects it in the menu, is specified in the contents of the ClientSideOnClick
property. Note in particular the use of the argument ‘editor’, editor.ClientID
(see the client-side script below).

Tool-bar button images are specified by the contents of properties IconOff
and IconOver. Place the images in the folder mentioned above. Also provide
images for tool-bar states Disabled and Selected following the same naming
scheme.

After initialisation, all the processing takes place on the client.

Create Client-Side JavaScript File LetterToHtmlEntity.js

The client-side script is stored in a file on the server and physically sent to the
client computer as part of the processing in the Initialize function on the class.

We decided to make the script toggle between letter and HTML Entity repre-
sentation. One lesson we learned is that you cannot simply include the letters in
a JavaScript file; it will be messed up as it reaches the client. So, instead of being
able to write nice obvious statements as in example 13-30, we had to write them
using String.fromCharCode as seen in the code (example 13-31).
305

Extending the DHTML Editor
Example 13-30: Desired JavaScript replace statements using ‘Æ’ directly.

InnerText = InnerText.replace("Æ", "Æ");

…

InnerText = InnerText.replace("Æ", "Æ");

Another involuntary lesson was that this String.replace function in JavaScript
seems to replace only the first occurrence of the specified string, hence the do–
while loops used in the script.

Example 13-31: Client-side JavaScript for DhtmlEditorLetterToEntityVisible class.

function ConvLetterToHtmlEntity(id) {

var InnerText = getEditor(id).document.body.innerText;

var ToEntityNames= false;

if (InnerText != null) {

ToEntityNames = ToEntityNames || (InnerText.indexOf(String.fromCharCode(198)) >= 0);

ToEntityNames = ToEntityNames || (InnerText.indexOf(String.fromCharCode(230)) >= 0);

if (ToEntityNames) {

do {

InnerText = InnerText.replace(String.fromCharCode(198), "Æ");

} while (InnerText.indexOf(String.fromCharCode(198)) >= 0);

do {

InnerText = InnerText.replace(String.fromCharCode(230), "æ");

} while (InnerText.indexOf(String.fromCharCode(230)) >= 0);

} else {

do {

InnerText = InnerText.replace("Æ",String.fromCharCode(198));

} while (InnerText.indexOf("Æ") >= 0);

do {

InnerText = InnerText.replace("æ",String.fromCharCode(230));

} while (InnerText.indexOf("æ") >= 0);

}

}

getEditor(id).document.body.innerText = InnerText;

}

The script as written is only capable of converting between the letter ‘Æ’ and
HTML Entity ‘Æ’ and the letter ‘æ’ and HTML Entity ‘æ’, respective-
ly. To include more letters, please make use of table D-1 on page 325. To ensure
that the function successfully toggles between the letter representation and the
HTML Entity representation, you must always test for the presence of all letters
which you replace, for variable ToEntityNames.
306

13. Extending EPiServer
You might want to make use of the fact that in the ANSI character table there
is a fixed distance of 32 between the upper and lower case versions of letters.

Using the Plug-In

Once all JavaScript quirks have been ironed out, the plug-in works very smoothly.
To test it, open EPiServer Edit mode and enter some text containing at least one
of the letters ‘Æ’ or ‘æ’ (type Alt+0230 and Alt+0198 if they’re not on your key-
board). We used the simple sentence ‘Ægteskab ær hustru og ægtemand’ (we’re
aware of the narrow-minded view, please bear with us).

Figure 13-27: The DHTML Editor with the DhtmlEditorLetterToEntityVisible plug-in visible as a new
button in the tool-bar.

Pressing the tool-bar button once nicely converts all eligible letters to their
HTML Entities as can be seen in figure 13-28.

Figure 13-28: The DhtmlEditorLetterToEntityVisible plug-in has been called once.

Next we’ll convert the HTML Entities back to proper letters by invoking the
shortcut menu (right-click) and then selecting the menu item ‘Letter <-> HTML
Entity’ (it’s at the bottom of the menu).

Visual Tuning of the Plug-In

If you’re not content with the placement of the tool-bar button or the placement
in the shortcut menu, both are controllable via properties of the EditorPlugIn at-
tribute.
307

Extending the DHTML Editor
Tool-bar button placement is controlled via the integer property ToolbarInd-
ex. The rule is: the higher the value, the farther the placement to the right on the
tool-bar.

Menu item placement is similarly controlled via the integer property MenuIn-
dex. This time the rule is: the higher the value, the closer the placement to the
bottom of the menu.

An Invisible DHTML Editor Plug-In to Toggle between Letter and HTML Entity

To demonstrate the use of invisible plug-ins, we’ll create a plug-in which does ex-
actly what the DhtmlEditorLetterToEntityVisible plug-in does, but using anoth-
er approach. Instead of exposing the ANSI–HTML Entity toggle in the user
interface, this time we’ll convert all text to ANSI before passing it to the client.
When the user’s done editing, all eligible letters in the text will be converted to
HTML Entities before passing the text back to the browser. In other words, we
divide the work between the server and the client.

The rationale for this plug-in is simplicity for Editors; they can work in their
own language and a higher degree of standards abidance as the HTML code in
Web pages presented to Web site visitors will feature HTML Entity names in-
stead of non-English letters.

N.B. This plug-in requires EPiServer 4.3 or later.

Create the DhtmlEditorLetterToEntityVisible Class Library

This plug-in will also be created outside of your main Visual Studio .NET solu-
tion. Open the Start Page, click New Project and select Class Library. Name the
library, the class file and the class itself DhtmlEditorLetterToEntityCovert. Add
EPiServer.dll and System.Web.dll as references (see page 304 for procedure).

This is what the class source code looks like, comments to follow.

Example 13-32: Source code for DhtmlEditorLetterToEntityCovert.cs.

namespace development {

/// <summary>DhtmlEditorLetterToEntityCovert is a plug-in for the

/// DHTML Editor, converting letters to HTML entities, and back, without

/// user intervention.</summary>

[EPiServer.Editor.EditorPlugIn(DisplayName="DhtmlEditorLetterToEntityCovert",

Description="DhtmlEditorLetterToEntityCovert does without user intervention",

Usage=EPiServer.Editor.ToolUsage.None)]

public class DhtmlEditorLetterToEntityCovert : EPiServer.Editor.Tools.ToolBase,

EPiServer.Editor.Tools.IInitializableTool {

void EPiServer.Editor.Tools.IInitializableTool.Initialize(EPiServer.Editor.HtmlEditor editor) {

editor.Text = EntityToLetter(editor.Text);

ClientScriptKey = "LetterToHtmlEntityCovert.js";

ClientScriptBlock = editor.GetScriptTag("LetterToHtmlEntityCovert.js");

ClientSideOnSubmit = string.Format("ConvertLetterToHtmlEntity('{0}');",
308

13. Extending EPiServer
editor.ClientID);

}

private string EntityToLetter(string TextToConvert) {

System.Text.StringBuilder TempString= new System.Text.StringBuilder(TextToConvert);

TempString.Replace("Æ","Æ");

TempString.Replace("æ","æ");

return TextToConvert;

}

}

}

Just a few things to note here.

Usage is set to None, meaning this plug-in does not have any visual represen-
tation or a keyboard presence.

ClientSideSubmit is new for EPiServer 4.3, it is used to set a script to run on
the client upon submission.

‘Pre-processing’ of the editor content is done on the server. In order to keep
the load low, we use StringBuilder instead String.

Since we don’t have to supply a toggling function, the code to convert letters and
entities is much simpler. However, we process the contents in two different plac-
es and it’s easy for them to go out of sync.

Create Client-Side JavaScript File LetterToHtmlEntityCovert.js

The JavaScript file contains a single function.

Example 13-33: JavaScript file LetterToHtmlEntityCovert.js

function ConvertLetterToHtmlEntity(id) {

var InnerText = getEditor(id).document.body.innerText;

if (InnerText != null) {

do {

InnerText = InnerText.replace(String.fromCharCode(198), "Æ");

} while (InnerText.indexOf(String.fromCharCode(198)) >= 0);

do {

InnerText = InnerText.replace(String.fromCharCode(230), "æ");

} while (InnerText.indexOf(String.fromCharCode(230)) >= 0);

}

getEditor(id).document.body.innerText = InnerText;

}

The JavaScript function ConvertLetterToHtmlEntity is quite simple; it converts
the letters ‘Æ’ and ‘æ’ to their respective HTML Entities.
309

Shadow Folders
Shadow Folders

Whenever ElektroPost updates EPiServer, you simply download the new version
to your Web site, overwriting the previous version. Any changes made to the user
interface parts of the Admin and Edit modes are thus lost. With the aid of Shad-
ow Folders, you can control which files are overwritten and which are preserved.
However, this places the burden on the developer to maintain compatibility be-
tween her own code and new versions of EPiServer.

Switching on Shadow Folders is as easy as adding one line to the settings file
web.config:

Example 13-34: Enabling Shadow Folders in web.config.

<add key="EPfEnableAlternateFiles" value="True" />

Next stop is to add new folders to the EPiServer installation. These folders have
fixed names: ‘admin_’, ‘edit_’ and ‘util_’, i.e. the ordinary EPiServer folder names,
but with an underscore, ‘_’, appended. When the EPiServer run-time searches for
files, it looks in ‘admin_’ before “admin” and so on. As you add to or replace
EPiServer functionality, you put the new files in the new folders which are never
overwritten by a new EPiServer version.

NB! Access permissions for the Shadow Folders must be specified in
web.config, as they are not automatically inherited.
310

A
Finding Information

Information on the Internet

As ASP.NET developers, we are blessed with a lot of information and Web sites
offering ASP.NET information and source code samples of almost every possi-
ble kind and flavour. Searching the Internet for ‘ASP.NET’ yields a response of
more than a million. When it comes to EPiServer development information, the
situation is a little different. There are something like five thousand Web pages
containing EPiServer information, most of them from our own site www.epis-
erver.com (of course we hope this will change over time as more and more de-
velopers start sharing EPiServer information and code samples over the
Internet).

A Lot Is Available on the EPiServer Web Site

As one of the major uses for EPiServer 4 is Web-based information solutions, it
is no wonder that there’s a whole Web site dedicated to EPiServer at http://www
.episerver.com.

Having been operating for a few years, the EPiServer Web site is quite com-
prehensive. On the site you’ll find information not only on EPiServer products
and customers but also:

Support, e.g. help with particular problems

Support tools

EPiServer Developer Community

Code Samples

EPiServer KnowledgeBase

FAQ (Frequently Asked Questions, i.e. Common Questions) lists

Technical notes and White Papers

Product releases

EPiServer Software Development Kit, SDK

EPiServer Manuals
311

EPiServer Developer Community
EPiServer Developer Community

The mission statement for the EPiServer Developer Community is: ‘EPiServer
Developer Community is a site dedicated to developers, you can browse code
samples or discuss different topics in the forum. We will continuously add more
content and features to help developers in their daily work.’

Developer Forums

There are currently three developer forums at the Developer Community Web
site:

Developer to developer – ‘Discuss different solutions on developer issues’

Feature requests – ‘New feature requests for EPiServer, from UI to API’

Problems and bugs – ‘Report errors and strange behaviour’

Code Samples

The Code Samples at the Developer Community Web site are written by both
ElektroPost developers and other EPiServer developers. There are currently six
different categories for code samples:

Custom property types – ‘Custom property types render their own user inter-
faces for both editing and viewing’

Editor Tools – ‘Tools adding features and extending the functionality of the
new DHTML Editor available as of EPiServer version 4.20’

Navigation and listings – ‘Controls and classes which render site navigation’

Problem solving – ‘Useful tools for problem-solving’

Productivity – ‘Specialised tools and classes which make life easier for EPiS-
erver solution developers’

Subscription – ‘Custom subscription mailer and other subscription-related
samples’

Frequently Asked Questions (Common Questions) Lists

Every question sent to the EPiServer support department at ElektroPost is a can-
didate for addition to the Frequently Asked Questions (FAQ) lists. The FAQ lists
are categorised for easier access:

Configuration: Common issues

Configuration: LDAP and Active Directory

Editor
312

A. Finding Information
Error messages

Hotfixes and known issues

Installation

Programming: Common questions

Programming: Templates

Programming: Web Services

Scheduler

Upgrading from EPiServer 3

Technical notes and White Papers

On the EPiServer Web site, you will find both Technical Notes which address a
specific technique and White Papers which are broader in scope than Technical
Notes. These are some of the White Papers that are available:

‘Technical Overview of EPiServer’

‘Getting started with EPiServer 4’

‘Security in EPiServer 4’

‘Developing User Controls for EPiServer 4’

‘Filters in EPiServer 4’

‘Creating Templates for EPiServer’

‘Integrating SharePoint and EPiServer’

EPiServer Software Development Kit

No doubt the major information source for EPiServer developers is the EPiServ-
er Software Development Kit, SDK. These are the major components of the
SDK:

EPiServer4SDK.chm – Windows help file documenting EPiServer classes,
etc.

EPiServer.xsd – syntax definition file, see below

ReadMe.htm (you know what this file is)

Sample source code from EPiServer itself: PropertyNumber, Edit, Filters
and Web Controls (ASP.NET Web Custom Control)
313

EPiServer Software Development Kit
Syntax Definition File

The syntax definition file will enable IntelliSense for EPiServer Web Custom
Controls in Visual Studio .NET, giving you auto-completion, option lists, etc.
when entering EPiServer tags in Web Forms. To install the file, copy EPiServ-
er.xsd to folder Program Files\Microsoft Visual Studio .NET\Common7\Pack-
ages\Schemas\ xml.

To benefit from the IntelliSense, you must include a name space declaration
in a tag which wraps the part on which you are working with EPiServer Web Cus-
tom Controls. Typically you will include this declaration in the <body> tag. It
should look like this:

Example A-1: XML Name Space declaration for EPiServer Web Custom Controls.

<body xmlns:EPiServer="http://schemas.episerver.com">

You might find a strange first character in EPiServer.xsd – this is a Unicode byte
order mark, Visual Studio .NET will not complain about it. (EPiServer.xsd is Uni-
code encoded and the byte order mark is duplicated and consists of two identical
Unicode characters with the character code ‘0xff 0xfe’.)
314

B
Database Queries

Important Database Tables

A lot of EPiServer database processing deals with about two handfuls of tables.
Most aspects of Page Types, Properties and Web Pages are stored in the database.
The most important tables in this respect are listed in table B-1.

Please note that all queries below assume that the query is executed inside the per-
tinent database.

Table B-1: The most important tables in the database for Page Types, Properties and Web Pages.

Table Name Description

tblPage Web Pages, a great deal of the contents are used to
instantiate the PageData object.

tblPageDefinition Properties and the Web Pages they are attached to.

tblPageDefinitionType Property Data Types, both built-in and user-defined.

tblPageType Defined Page Types.

tblProperty All Properties for all Web Pages and their values.

tblACL Access Control List, ACL, for a Web page.

tblSID EPiServer Security Identifiers for users and groups.

tblSIDGroup Connector between groups and users (connects entries in
tblSID)

tblUser Registered users on the Web site.
315

Important Database Tables
The relationships between the tables can be seen in figures B-1 and B-2.

Figure B-1: Relationships between the database tables, tblPage, tblProperty, tblPageDefinition and tblPageType.

In figure B-1, note for example that in tblPage there are two internal relation-
ships. One of them, between columns fkParentID and pkID, is used to realise the
page tree hierarchy. Every page in the page tree has a parent except for the page
pointed to by EPiServer.Global.EPConfig.RootPage, which has a null entry for
fkParentID.
316

B. Database Queries
Figure B-2: Relationships between tblPage, tblACL, tblSID, tblSIDGroup and tblUser.

Figure B-2 depicts four different sets of relationships:

Linking user to EPiServer Security ID, SID, and EPiServer Group

Linking access permission (Access Control List, ACL) to an EPiServer Secu-
rity ID

Linking page creators and changers to EPiServer Security ID

SQL Queries to Retrieve Page Types, Properties and Web Pages

List All Defined Page Types

Example B-1: SQL query to list all defined Page Types.

select Name, Filename from tblPageType

order by Name

There is more interesting information in the Page Type table, e.g. the column
pkID, which is the primary key. You’ll find this primary key used as a foreign key
in several other tables, mostly under the name fkPageTypeID.
317

SQL Queries to Retrieve Page Types, Properties and Web Pages
List All Page Template Files, Page Types and Web Pages

Example B-2: SQL Query to list all Page Template Files, Page Types and Web Pages.

select distinct tblPageType.FileName 'Page Template File', tblPageType.Name 'Page Type Name',

tblPageType.Description 'Page Type Description', tblPage.Name 'Web Page Name',

tblPage.LinkURL 'Web Page URL'

from tblPageType

inner join tblPage

on tblPageType.pkID = tblPage.fkPageTypeID

order by tblPage.Name

List All Defined Data Types

Example B-3: SQL query to list all Property Data Types.

select Name, TypeName, AssemblyName from tblPageDefinitionType

order by TypeName, Name

Executing this query against a newly installed EPiServer Web site database would
yield a result set much like this:
Table B-2: EPiServer Data Types defined at installation.

Data Type Name Full Data Type Name Assembly
Name

Boolean NULL NULL

Category NULL NULL

Date NULL NULL

FloatNumber NULL NULL

Form NULL NULL

LongString NULL NULL

Number NULL NULL

PageReference NULL NULL

PageType NULL NULL

String NULL NULL

DocumentUrl EPiServer.SpecializedProperties.Property-
DocumentUrl

EPiServer

Frame EPiServer.SpecializedProperties.PropertyFrame EPiServer
318

B. Database Queries
List All Defined Property Types and Their Data Type

Example B-4: SQL Query to list all defined Property Types and their Data Type.

select distinct tblPageDefinition.Name 'Property Name', tblPageDefinitionType.Name 'Data Type',

tblPageDefinition.EditCaption, tblPageDefinition.HelpText

from tblPageDefinition inner join tblPageDefinitionType

on tblPageDefinition.fkPageDefinitionTypeID=tblPageDefinitionType.pkID

order by tblPageDefinition.Name

List All Page Types and Their Properties

Example B-5: SQL query list all defined Page Types and their Properties.

select tblPageType.Name 'Page Type Name', tblPageType.Description 'Page Type Description',

tblPageType.FileName 'Page Template File', tblPageDefinition.Name 'Property Name',

tblPageDefinition.EditCaption 'Edit Heading', tblPageDefinition.HelpText 'Help Text'

from tblPageType inner join tblPageDefinition

on tblPageType.pkID = tblPageDefinition.fkPageTypeID

order by tblPageType.Name, tblPageDefinition.FieldOrder

List All Dynamic Properties

Example B-6: SQL query to list all Dynamic Properties.

select distinct tblPageDefinition.Name 'Property Name', tblPageDefinitionType.Name 'Data Type',

tblPageDefinition.EditCaption, tblPageDefinition.HelpText

from tblPageDefinition inner join tblPageDefinitionType

on tblPageDefinition.fkPageDefinitionTypeID=tblPageDefinitionType.pkID

ImageUrl EPiServer.SpecializedProperties.PropertyImageUrl EPiServer

Language EPiServer.SpecializedProperties.PropertyLanguage EPiServer

Password EPiServer.SpecializedProperties.PropertyPassword EPiServer

Selector EPiServer.SpecializedProperties.PropertySelector EPiServer

Sid EPiServer.SpecializedProperties.PropertySid EPiServer

SortOrder EPiServer.SpecializedProperties.PropertySortOrder EPiServer

Url EPiServer.SpecializedProperties.PropertyUrl EPiServer

WeekDay EPiServer.SpecializedProperties.PropertyWeekDay EPiServer

Table B-2: EPiServer Data Types defined at installation.

Data Type Name Full Data Type Name Assembly
Name
319

SQL Queries to Retrieve Page Types, Properties and Web Pages
where tblPageDefinition.fkPageTypeID is null

order by tblPageDefinition.Name

List All Web Pages with Their Properties and Current Values

Example B-7: SQL query to list all Web Pages with their Properties and current values.

select tblPage.LinkURL 'Web Page URL', tblPage.Name 'Web Page Name', tblPageDefinition.Name

'Property Name', 'Property Value' =

case

when tblProperty.Number is null and tblProperty.FloatNumber is null and

tblProperty.PageType is null and tblProperty.PageLink is null and tblProperty.Date is null and

tblProperty.String is null and tblProperty.LongString is null

then 'Boolean: ' + cast(tblProperty.Boolean as varchar(40))

when tblProperty.Number is not null then 'Number: '+ cast(tblProperty.Number as varchar(40))

when tblProperty.FloatNumber is not null then 'FloatNumber: '+ cast(tblProperty.FloatNumber as

varchar(40))

when tblProperty.PageType is not null then 'PageType: '+ cast(tblProperty.PageTypeas

varchar(40))

when tblProperty.PageLink is not null then 'PageLink: '+ cast(tblProperty.PageLinkas

varchar(40))

when tblProperty.Date is not null then 'Date: '+ cast(tblProperty.Dateas varchar(40))

when tblProperty.String is not null then 'String: '+ cast(tblProperty.Stringas varchar(40))

when tblProperty.LongString is not null then 'LongString: '+ cast(tblProperty.LongStringas

varchar(40))

else cast('Error Determining Value!' as varchar(40))

end

from tblProperty inner join tblPage

on tblProperty.fkPageID = tblPage.pkID inner join tblPageDefinition

on tblProperty.fkPageDefinitionID = tblPageDefinition.pkID

order by tblPage.LinkURL, tblPage.Name, tblPageDefinition.Name

SQL Query to List All User Tables and Their Columns In a SQL Server Database

Example B-8: SQL query to list all user tables and their columns in a Microsoft SQL Server database.

select sysobjects.Name, syscolumns.Name

from sysobjects inner join syscolumns on sysobjects.id = syscolumns.id

where sysobjects.xtype = 'U'

order by sysobjects.Name, syscolumns.colorder

SQL Server Procedure to Display the Web Page Hierarchy

SQL Server Books Online presents a stored procedure to display hierarchies in
stored data (see ‘Expanding Hierarchies’). We found a more elegant, recursive,
stored procedure to solve the same problem on the Internet (see http://vyaskn
.tripod.com/hierarchies_in_sql_server_databases.htm).
320

B. Database Queries
This is what it looks like adapted for tblPage:

Example B-9: SQL commands to produce and execute a recursive stored procedure to display the Web Page
hierarchy in table tblPage.

IF EXISTS (SELECT name FROM sysobjects

WHERE name = 'ShowHierarchy' AND type = 'P')

DROP PROCEDURE ShowHierarchy

go

CREATE PROC dbo.ShowHierarchy (@Root int) AS BEGIN

SET NOCOUNT ON

DECLARE @PageID int, @PageName varchar(30)

SET @PageName = (SELECT Name FROM dbo.tblPage WHERE pkID = @Root)

PRINT REPLICATE('-', @@NESTLEVEL * 4) + @PageName

SET @PageID = (SELECT MIN(pkID) FROM dbo.tblPage WHERE fkParentID = @Root)

WHILE @PageID IS NOT NULL

BEGIN

EXEC dbo.ShowHierarchy @PageID

SET @PageID = (SELECT MIN(pkID) FROM dbo.tblPage

WHERE fkParentID = @Root AND pkID > @PageID)

END

END

go

ShowHierarchy 1

go

Assuming that the smallest pkID value is 1, the commands in example B-9 would
produce the complete hierarchy for all pages in tblPage.

To see only the Web pages which are marked as VisibleInMenu (value set to
1), alter the above procedure to look like this:

Example B-10: Recursive stored procedure to list the hierarchy of all visible Web pages.

CREATE PROC dbo.ShowHierarchy (@Root int) AS BEGIN

SET NOCOUNT ON

DECLARE @PageID int, @PageName varchar(30)

SET @PageName = (SELECT Name FROM dbo.tblPage WHERE pkID = @Root)

PRINT REPLICATE('-', @@NESTLEVEL * 4) + @PageName

SET @PageID = (SELECT MIN(pkID) FROM dbo.tblPage WHERE fkParentID = @Root

and VisibleInMenu = 1)

WHILE @PageID IS NOT NULL

BEGIN
321

SQL Queries to Retrieve Page Types, Properties and Web Pages
EXEC dbo.ShowHierarchy @PageID

SET @PageID = (SELECT MIN(pkID) FROM dbo.tblPage WHERE fkParentID = @Root

and VisibleInMenu = 1 AND pkID > @PageID)

END

END
322

C
Developers’ Book List

This is a short list, but we can whole-heartedly recommend each and everyone of
these books!

Code Complete, Steve McConnell (Microsoft Press 1993, ISBN 1-55615-484-4)

Design Patterns, Erich Gamma, Richard Helm, Ralph Johnsson & John Vlissides
(Addison-Wesley 1995, ISBN 0-201-63361-2)

Mr. Bunny’s Guide to ActiveX, Carlton Egremont III (Carlton Egremont III 1998,
ISBN 0-201-48536-2)

Refactoring: Improving the Design of Existing Software, Martin Fowler (Addison-Wesley
2000, ISBN 0-201-48567-2)

About Face 2.0: The Essentials of Interaction Design, Alan Cooper & Robert Reimann
(John Wiley & Sons Inc 2003, ISBN 0-7645-2641-3)

Designing with Web Standards, Jeffrey Zeldman (New Riders 2003, ISBN 0-7357-
1201-8)

Writing Secure Code, 2:nd edition, Michael Howard and David LeBlanc (MS Press
2003, ISBN 0-7356-1722-8)
323

324

D
ANSI To HTML Entity Table

Table D-1: ANSI character code to HTML Entity Names.

Code Char HTML Entity Code Char HTML Entity

128 € € 192 À À

129 193 Á Á

130 ‚ ‚ 194 Â Â

131 ƒ ƒ 195 Ã Ã

132 „ „ 196 Ä Ä

133 … … 197 Å Å

134 † † 198 Æ Æ

135 ‡ ‡ 199 Ç Ç

136 ˆ ˆ 200 È È

137 ‰ ‰ 201 É É

138 Š Š 202 Ê Ê

139 ‹ ‹ 203 Ë Ë

140 Œ Œ 204 Ì Ì

141 205 Í Í

142 Ž Ž 206 Î Î

143 207 Ï Ï

144 208 Ð Ð

145 ‘ ‘ 209 Ñ Ñ
325

146 ’ ’ 210 Ò Ò

147 “ “ 211 Ó Ó

148 ” ” 212 Ô Ô

149 o • 213 Õ Õ

150 – – 214 Ö Ö

151 — — 215 × ×

152 ˜ ˜ 216 Ø Ø

153 ™ ™ 217 Ù Ù

154 š š 218 Ú Ú

155 › › 219 Û Û

156 œ œ 220 Ü Ü

157 221 Ý Ý

158 ž ž 222 Þ Þ

159 Ÿ Ÿ 223 ß ß

160 224 à à

161 ¡ ¡ 225 á á

162 ¢ ¢ 226 â â

163 £ £ 227 ã ã

164 ¤ ¤ 228 ä ä

165 ¥ ¥ 229 å å

166 ¦ ¦ 230 æ æ

167 § § 231 ç ç

168 ¨ ¨ 232 è è

169 © © 233 é é

170 ª ª 234 ê ê

Table D-1: ANSI character code to HTML Entity Names.

Code Char HTML Entity Code Char HTML Entity
326

D. ANSI To HTML Entity Table
171 « « 235 ë ë

172 ¬ 236 ì ì

173 ­ 237 í í

174 ® ® 238 î î

175 ¯ ¯ 239 ï ï

176 ° ° 240 ð ð

177 ± ± 241 ñ ñ

178 ² ² 242 ò ò

179 ³ ³ 243 ó ó

180 ´ ´ 244 ô ô

181 µ µ 245 õ õ

182 ¶ ¶ 246 ö ö

183 · · 247 ÷ ÷

184 ¸ ¸ 248 ø ø

185 ¹ ¹ 249 ù ù

186 º º 250 ú ú

187 » » 251 û û

188 ¼ ¼ 252 ü ü

189 ½ ½ 253 ý ý

190 ¾ ¾ 254 þ þ

191 ¿ ¿ 255 ÿ ÿ

Table D-1: ANSI character code to HTML Entity Names.

Code Char HTML Entity Code Char HTML Entity
327

328

List of Figures

1-1 Comparing Message Passing, to the left, and Event Driven programming, to the right. . . 2
1-2 Code-behind files for an ASP.NET application are compiled into a dynamic link library file.

7
1-3 Clicking an ASP.NET Button on a client results in handling code being called in the code-

behind DLL on the Web server. 7
1-4 Linking file extension to handler (picture edited). 8
1-5 The ASP.NET chain from client to server and back. 8
1-6 The ASP.NET and EPiServer chain from client to server and back. 10
2-1 Admin mode tool-bar (EPiServer version 4.2). . 17
2-2 Tools and Page Types in the left pane of EPiServer 4.2 Admin mode (pictures have been

re-arranged). . 17
2-3 EPiServer Edit mode for the example Web site, start page being edited. 19
2-4 EPiServer 4.2 Edit mode tool-bar. 20
2-5 The Web Page Tree in EPiServer Edit mode (from the example Web site). 20
2-6 The Start page for the example Web site in Edit mode. 21
2-7 Techniques and tools used in the operation of an EPiServer site. 22
3-1 Relationship between Page Templates, Page Types and Web Pages. 24
3-2 Web Page Tree.. 26
3-3 EPiServer 4 Architecture. . 27
3-4 EPiServer folder tree and files in root folder. . 28
3-5 Cooperation between structure and content. . 34
3-6 Framework Definition Files ‘declare’ regions that are used by Page Template Files. . . . 35
3-7 Start page of the example Web site to the left and the tables from its Framework Definition

File to the right.. 36
3-8 Effect of using HTML Tables based Framework with simple Page Template. 40
3-9 Effect of using HTML Div elements based Framework with simple Page Template. 43
3-10 Handling access permissions in EPiServer Admin mode.. 47
3-11 EPiServer System Settings (from the Example Web site).. 49
4-1 Example Web site in Internet Explorer. . 58
4-2 EPiServer Page Type viewed as ‘Queen of the hill’. 60
4-3 Properties for example Web site showing Default.aspx to be the default Web page.. . . 62
4-4 Example Web site in Edit mode, first level of page tree mostly expanded. 65
4-5 Visual appearance of Web site when selecting ‘Only start page without any Page Types or

content’. 68
4-6 Dynamic Property MainSearchPage added.. 70
4-7 Pointing the ‘Calendar’ Web page. 75
4-8 Final appearance of the Mimic Web site. . 79
4-9 The nested tables in the first row of the outer table. 82
4-10 The nested tables in row two of the outer table (region names included). 83
4-11 The six regions defined in Default Framework.ascx. . 84
4-12 Regions in DefaultFramework.ascx used by default.aspx. . 85
4-13 Picture used for background in the first table in the first row of the outer table in Default-

Framework.ascx. 87
329

5-1 DebugView at work.. 98
5-2 FileMon.Exe at work. 99
5-3 RegMon.Exe at work. 100
5-4 Effect of setting page attribute Trace to true. 104
5-5 Viewing trace information for application Mimic. 105
5-6 Attaching to a running process from the Visual Studio .NET debugger. 110
5-7 A source code line with a break point set, on the left, and appearance when execution halts

at the line, on the right. 110
5-8 After selecting Step Into from the break point at line 38, execution is currently inside the

function CollectRegions. 113
5-9 Effect of using Step Over twice after execution halted on line 38.. 114
5-10 QuickWatch window displaying information for a variable named regions. 115
5-11 Settings for handling, or not, exceptions in the VS.NET debugger. 116
5-12 Call Stack window.. 116
5-13 Command Window in Immediate Mode.. 118
5-14 Results from an ASP.NET application profiling in NProf. 120
6-1 Object model for EPiServer.PageBase. 127
6-2 Inheritance tree for class EPiServer.PageBase. 127
6-3 Object model for EPiServer.UserControlBase. 142
6-4 Object model for EPiServer.PageData. 144
6-5 StartPublish and StopPublish are controlled from EPiServer Edit mode. 152
6-6 RootPage and StartPage for the example Web site Web Page Tree. 163
7-1 Inheritance Tree for EPiServer.WebControls name space, first three levels shown for all,

more for UserControlBase and ContentFramework. 169
7-2 Actual news items presented using the templated control NewsList. 172
7-3 Using ExplorerTree in EPiServer Edit mode. 177
7-4 Using ExplorerTree control on a Web page. 177
7-5 Result of using TopMenu.ascx in the example Web site. . 178
7-6 Using NewsList on Mimic’s start page. 180
7-7 Example of PageList on Web page. 182
7-8 Using PageSearch on a Web Form Search.aspx. 183
7-9 Result presented when searching the Mimic Web site for the word ‘mimic’. 183
7-10 Menu created by Web Control Menu.ascx using Custom Controls PageTree and MenuList.

The right-hand picture is the result of expanding the item News. 187
7-11 Menu created by the simplified Web Control Menu.ascx using Custom Controls PageTree

and MenuList. The right-hand picture is the result of expanding the item News. 190
8-1 Handling a property of the type BackgroundColourType in EPiServer Edit mode. 204
8-2 An error ‘created’ in custom validator is signalled in EPiServer Edit mode. 206
8-3 The role of Custom Filters. On the left a templated control fed from the Page database, and

on the right a Custom Filter is used to select the data. . 207
8-4 Before and after using the Custom Filter. On the left the templated control without the Filter

and on the right the results after applying the Custom Filter. 209
9-1 EPiServer.DataFactory object EPiServer.Global.EPDataFactory.. 211
9-2 Discussion forum template which ships with EPiServer. 217
9-3 New discussion forum posting template. . 218
9-4 EPServer.Global.EPDataFactory is exposed as a Web Service. 222
9-5 Page returned when logging on to the page http://.../WebServices/DataFactoryService.as-
330

mx. . 223
9-6 Example of results using Web Services to retrieve page information from EPiServer. . 224
9-7 EPiServer Admin mode menu, Tools section (incomplete). 226
10-1 News group Windows (from the example Web site) as it appears to an anonymous user. .

242
10-2 News group Windows (from the example Web site) as it appears to a logged-on user. 242
11-1 Scheduled jobs interaction between EPiServer and EPiServer Scheduler. 243
11-2 Scheduled jobs section, EPiServer Admin mode. 243
11-3 Result of running scheduled job ‘Tells time of invocation’. 246
11-4 Error message from EPiServer Admin mode trying to run faulty scheduled job. 246
11-5 Scheduled job ‘Tells time of invocation’ being debugged.. 247
11-6 EPiServer Admin mode, new custom scheduled job visible. 251
11-7 Settings for scheduled job ‘Mail list of newly created pages’. 251
11-8 First report from new job ‘Mail list of newly created pages’. 251
12-1 File management tool in Tools section of Admin mode menu (EPiServer 4.3 and later).262
13-1 The extensible areas of EPiServer Admin mode. 267
13-2 The extensible areas of the EPiServer Edit mode. 268
13-3 Inheritance hierarchy for classes in EPiServer.PlugIn name space. 269
13-4 Edit mode Action window. . 274
13-5 ActionWindowSimpleton plug-in in the Action window. . 275
13-6 ActionWindowSimpleton plug-in open. 275
13-7 ActionWindowClock plug-in: on the left in the Action window menu, on the right in action.

277
13-8 EditPanelSimpleton plug-in in the Edit Panel tab strip. 277
13-9 EditPanelSimpleton plug-in open. . 278
13-10 EditPanelPageInfo plug-in at work. 279
13-11 EditTreeSimpleton plug-in in the Edit Tree tab strip. 280
13-12 EditTreeSimpleton plug-in open. 280
13-13 Web User Control EditTreeMyPages at work. . 282
13-14 SystemSettingsSimpleton plug-in in the System settings tab strip. 284
13-15 SystemSettingsSimpleton plug-in open. 284
13-16 WebConfigEditor plug-in in the System settings tab strip. . 289
13-17 WebConfigEditor plug-in open (screen dump has been trimmed).. 289
13-18 Result of clicking on the Edit Button. 289
13-19 AdminMenuSimpleton plug-in in the Admin menu, Tools section. 291
13-20 AdminMenuSimpleton plug-in open. . 291
13-21 Admin mode menu Tools section with new menu choice ‘Recent pages’. 294
13-22 Result of running AdminMenuRecentlyCreatedList Web Form. 294
13-23 Final visual appearance of AdminMenuRecentlyCreatedList. 295
13-24 The DHTML Editor for LongString properties/values. 297
13-25 The DHTML Editor with the DhtmlEditorSimpleton plug-in visible in the tool-bar. 303
13-26 DhtmlEditorSimpleton plug-in in action. 303
13-27 The DHTML Editor with the DhtmlEditorLetterToEntityVisible plug-in visible as a new button

in the tool-bar. . 307
13-28 The DhtmlEditorLetterToEntityVisible plug-in has been called once. 307
B-1 Relationships between the database tables, tblPage, tblProperty, tblPageDefinition and

tblPageType. 316
331

B-2 Relationships between tblPage, tblACL, tblSID, tblSIDGroup and tblUser. 317
332

List of Tables

1-1 Inheritance for EPiServer object types. . 9
2-1 EPiServer DLLs and executables. 15
2-2 EPiServer Property Data Types.. 18
3-1 EPiServer folder contents.. 28
3-2 EPiServer Property Data Types.. 31
3-3 Built-in Properties for Page Types and thus Web Pages. . 32
3-4 Common static user-defined properties. 32
3-5 EPiServer settings in web.config (not comprehensive). 48
4-1 Essential Page Templates in the Example Web site. . 59
4-2 Page Types in the example Web site. . 60
4-3 Page Templates used to create more than one Page Type in the example Web site. . . 62
4-4 The most commonly used properties on Page Types. . 63
4-5 Dynamic properties used in the example Web site. 63
4-6 Properties used on Page Type Start page (start page for the Web site Example).. 64
4-7 Page Types used to create more than one Web page for the example Web site. 66
4-8 Page Templates, Page Types and Web Pages in folders and the database. 67
4-9 Properties used on Page Type Start page. 69
4-10 Template Type information. 71
4-11 Important property settings for Calendar Web Page.. 74
4-12 Page Types for the Mimic Web site.. 76
4-13 Retrieval methods used for three static Properties in Page Template Start. 93
6-1 Public properties for EPiServer.PageBase. . 128
6-2 Public methods for EPiServer.PageBase. . 129
6-3 Some of UnifiedPrincipal’s properties and methods. . 134
6-4 Public properties for EPiServer.EditPage. 138
6-5 Public methods for EPiServer.EditPage. 138
6-6 Protected properties for EPiServer.EditPage.. 138
6-7 Protected methods for EPiServer.EditPage.. 139
6-8 Parameters for method EPiServer.Util.LoginBase.HandleFormsLogin. 141
6-9 UserControlBase’s own public attributes. 142
6-10 UserControlBase’s own public methods. 142
6-11 Public properties for EPiServer.Core.PageData. 145
6-12 Public methods for EPiServer.Core.PageData. 146
6-13 Public fields for EPiServer.Core.PageData.ACL. 147
6-14 Public properties for EPiServer.Core.PageData.ACL. . 147
6-15 Public methods for EPiServer.Core.PageData.ACL. . 147
6-16 Public properties for EPiServer.IPageSource. . 153
6-17 Public methods for EPiServer.IPageSource. . 154
6-18 Public Properties . 154
6-19 Prefixes used for settings in the appSettings section of web.config file.. 157
6-20 Public properties for EPiServer.ApplicationConfiguration. 158
6-21 Public methods for EPiServer.ApplicationConfiguration. 160
7-1 EPiServer ASP.NET Web Custom Controls. 165
333

7-2 The two important attributes in EPiServer.WebControls.Content. 174
7-3 ExplorerTree attributes. 178
7-4 PageList attributes. . 185
7-5 Attributes for EPiServer.WebControls.Property. 191
7-6 PropertyCriteria attributes. 194
7-7 Attributes implemented by EPiServer.Translate. 199
8-1 Standard property data types.. 201
8-2 Information when creating new property type. 204
9-1 Public properties for EPiServer.DataFactory. 212
9-2 Public methods for EPiServer.DataFactory. 213
9-3 Public events for EPiServer.DataFactory. . 214
9-4 RawProperty.Name returned to Web Services client. 225
9-5 Public properties for EPiServer.Enterprise.ExportImportBase. 227
9-6 Public methods for EPiServer.Enterprise.ExportImportBase. 228
9-7 Public Methods for EPiServer.Enterprise.DataExporter. . 229
9-8 Public Methods for EPiServer.Enterprise.DataImporter. 229
10-1 Classes in the EPiServer.Personalization name space. 235
10-2 Interfaces in the EPiServer.Personalization name space. 236
10-3 Enumerations in the EPiServer.Personalization name space.. 236
10-4 Public properties for EPiServer.Personalization.PersonalizedData. 236
10-5 Public methods for EPiServer.Personalization.PersonalizedData. 237
10-6 Ways to access information for the currently logged-on user. 239
11-1 Public Properties for EPiServer.PlugIn.ScheduledPlugIn class. 244
12-1 EPiServer.FileSystem classes. 254
12-2 EPiServer.FileSystem delegates. . 254
12-3 Public Properties for EPiServer.FileSystem.UnifiedDirectory. 255
12-4 Public methods for EPiServer.FileSystem.UnifiedDirectory. 255
12-5 Public properties for EPiServer.FileSystem.UnifiedFile. 256
12-6 Public methods for EPiServer.FileSystem.Unified File. . 256
12-7 Public properties for EPiServer.FileSystem.UnifiedFileSummary. 257
12-8 Public methods for EPiServer.FileSystem.UnifiedFileSummary. 257
12-9 Public properties for EPiServer.FileSystem.UnifiedFileSystem.. 258
12-10 Public methods for EPiServer.FileSystem.UnifiedFileSystem.. 258
12-11 Public events for EPiServer.FileSystem.UnifiedFileSystem. 258
12-12 Public properties for EPiServer.FileSystem.UnifiedFileSystemConfiguration. 258
12-13 Public Methods for EPiServer.FileSystem.UnifiedFileSystemConfiguration. 259
12-14 Public properties for EPiServer.FileSystem.UnifiedSearchHit. 259
12-15 Public properties for EPiServer.FileSystem.UnifiedSearchHitCollection. 259
12-16 Public methods for EPiServer.FileSystem.UnifiedSearchHitCollection. 259
12-17 Public properties for EPiServer.FileSystem.UnifiedSearchQuery. 260
12-18 Public methods for EPiServer.FileSystem.UnifiedSearchQuery. 260
12-19 Public methods for EPiServer.FileSystem.WebDownloadManager. 260
12-20 Arguments passed to the event function (EPiServer.FileSystem .FileSystemEventHandler).
261
12-21 Classes in EPiServer.WebControls which use EPiServer.FileSystem functionality. 261
12-22 Configuration settings for default file system handler, NativeFileSystem. 263
13-1 Classes in EPiServer.PlugIn name space. 269
334

13-2 Interfaces in EPiServer.PlugIn name space. 270
13-3 Enumerations in EPiServer.PlugIn name space. . 270
13-4 Members on the enumeration EPiServer.PlugIn.PlugInArea.. 270
13-5 Public properties for EPiServer.PlugIn.PlugInAttribute. . 271
13-6 Public properties for EPiServer.PlugIn.GuiPlugInAttribute. 272
13-7 Public methods for EPiServer.PlugIn.GuiPlugInAttribute. 272
13-8 Public methods for EPiServer.PlugIn.PageDefinitionTypePlugInAttribute. 273
13-9 Public properties for EPiServer.PlugIn.PlugInDescriptor. . 273
13-10 Public methods for EPiServer.PlugIn.PlugInDescriptor. . 273
13-11 Public methods for EPiServer.PlugIn.PlugInLocator. . 273
13-12 Public methods for EPiServer.PlugIn.PlugInSettings. 274
13-13 Public properties for EPiServer.PlugIn.ScheduledPlugInAttribute. 274
13-14 Public properties for EditorPlugInAttribute.. 298
13-15 Public methods for EditorPlugInAttribute.. 299
13-16 Members in the ToolUsage Enumeration. 299
13-17 Public properties for ToolBase. 300
13-18 Protected methods for ToolBase.. 301
B-1 The most important tables in the database for Page Types, Properties and Web Pages. . .
315
D-1 ANSI character code to HTML Entity Names. . 325
335

336

List of Examples

1-1 Pseudo code for the message handling loop in early Windows applications.. 2
1-2 Declaration of an ASP.NET Button control. 4
1-3 Declaration of an HTML Button control. 4
1-4 Form created by Visual Studio .NET. 4
1-5 Actual View State variable. 5
1-6 Wrapping view state EditMode in a property function in Profile.ascx. 5
1-7 Typical use of IsPostBack in EPiServer solutions. . 6
1-8 C# code in the code-behind file to handle the Click event for an ASP.NET Button. 6
1-9 C# code in the source file to handle the Click event for a Windows Forms Button. 6
3-1 Displaying the value of built-in Property PageName in HTML code. 33
3-2 Displaying the value of user-defined Property MainIntro in HTML code. 33
3-3 Displaying the value of built-in Property PageName in C#.. 33
3-4 Displaying the value of user-defined Property MainIntro in C#. 33
3-5 Using IsDynamicProperty for user-defined Property MainIntro in C#. 33
3-6 Defining an EPiServer Region in a Framework Definition File. 37
3-7 Regions are used by a Content class object. 37
3-8 Simple Framework Definition File using HTML tables. . 38
3-9 Page Template File using the HTML Table based Simple Framework Definition File. . . . 39
3-10 Simple Framework Definition file based on HTML Div elements. 40
3-11 Original Framework usage lines in Page Template File. 42
3-12 Changed Framework usage lines in Page Template File. . 42
3-13 Parts of the Page Template File Login.aspx . 43
3-14 Using PageBase.AccessDenied. 48
3-15 Using EPConfig in the code-behind file for a Web User Control (ascx.cs file). 49
3-16 Using EPConfig in the code-behind file for a Web Form (aspx.cs file). 50
3-17 Using EPConfig in HTML for a Web User Control (ascx file). 50
3-18 Using EPConfig in the code-behind file of a Web User Control (ascx.cs file). 50
3-19 Using Configuration in the code-behind file of a Web User Control.. 50
3-20 Using Configuration in the code-behind file of a Web User Control.. 51
3-21 Using Configuration in JavaScript in an ASP.NET Web Form (for EPiServer Edit mode). 51
3-22 Using Configuration in an ASP.NET Web Form (for EPiServer Edit mode). 51
3-23 Using Configuration in a code-behind file that’s a descendant of EPiServer.PageBase . . 51
3-24 Using Configuration in HTML. 51
3-25 Using the Page property in HTML. 51
3-26 Using the Page attribute in a code-behind file. 51
3-27 A reference to EPiServer WebControls schema added to an HTML Body tag. 54
3-28 A reference to EPiServer WebControls schema added to an HTML Table tag.. 54
4-1 User Controls registered for use in DefaultFramework.ascx. 80
4-2 Name space EPiServer.WebControls registered for use in DefaultFramework.ascx. 81
4-3 HTML table skeleton in DefaultFramework.. 81
4-4 Part of default.aspx, the start page for the example Web site. 84
4-5 First row of outer table in DefaultFramework.ascx contains two nested tables. 86
4-6 Property function HeaderImage in the code-behind file DefaultFramework.ascx.cs. . . . 87
337

4-7 Actual HTML code resulting from DefaultFramework.ascx. 88
4-8 Resulting HTML code when using QuickSearch.ascx. 88
4-9 HTML code when using TopMenu.ascx. 89
4-10 Declaration of EPiServer.WebControls in Default.aspx. . 90
4-11 Declaration of NewsList in Default.aspx.. 90
4-12 NewsList.NewsTemplate specification in Default.aspx.. 90
4-13 Specification for mainRegion in Default.aspx. 91
4-14 Extract from Default.aspx.cs, the code-behind file. 92
4-15 Registration of User Control PageBody in Default.aspx. 92
4-16 The HTML part of User Control PageBody.ascx. . 92
5-1 Effects of treating a simple variable as an object in Microsoft .NET. 101
5-2 Variables of simple data types behave as objects when treated as such. 102
5-3 String handling using String objects. 102
5-4 String handling using StringBuilder objects. 102
5-5 Implicit concatenation in the call to StringBuilder.Append. 103
5-6 Two calls to StringBuilder.Append. . 103
5-7 Trace directive added to ASP.NET Web Form, i.e. EPiServer Page Template. 104
5-8 Trace directive added to web.config enables tracing for the whole application. 105
5-9 Use of Assert method to test the IsNull property of variable prop. 106
5-10 Using System.Diagnostics.Debug.Write and WriteLine in code.. 107
5-11 Adding a Debug output TraceListener. 107
5-12 Using conditional compilation constant Debug. 108
5-13 Using the function attribute Conditional. . 108
5-14 Message from Visual Studio .NET when attaching to ASPNET_WP.Exe for debugging pur-
poses. 110
5-15 Condition for break point to stop execution when CurrentPage.Link.ID equals 17. . . . 112
5-16 Condition for break point to stop execution when CurrentPageLink equals “17”. 112
5-17 Command line in Immediate Mode to display the contents of the ID property.. 118
5-18 Command line in Immediate Mode to display the contents of CurrentPage["NewsCount"].
118
5-19 Command line to start EPiServer Scheduler service with its debug switch.. 121
5-20 Example output from EPiServer Scheduler service in debug mode. 121
5-21 Example of SOAP-ENC:Array section listing Web sites in EPiServer.SchedulerService.Sites
.xml. 122
5-22 Example of SOAP-ENC:Array section listing Web sites in EPiServer.SchedulerService.Sites
.xml. 122
5-23 Example of an a3:SiteConnect section. . 122
6-1 Declaration for class PageBase in Visual Basic .NET, C# and JScript .NET.. 127
6-2 Cast using EPiServer.PageBase. . 128
6-3 Using PageBase.Configuration and PageBase.CurrentPage. 129
6-4 Using Configuration to display information about the start page for the Web site. . . . 130
6-5 Using Controls property.. 130
6-6 Using System.Web.UI.ControlCollection.Controls to find all Region control objects on the
current page (included with the Content Framework Definition File). 131
6-7 Using PageBase.CurrentPage on a Page Template File, outside of any included controls. .
131
6-8 Using CurrentPage.PageName on a Page Template File, inside ContentFramework and Con-
338

tent control. 132
6-9 Using PageBase.CurrentPage inside an EPiServer templated control.. 132
6-10 User PageBase.CurrentPage in conjunction with Container in a templated control. . . . 132
6-11 Using PageBase.CurrentPage and PageBase.IsValue. . 133
6-12 Using CurrentPageLink to retrieve the PageData object. . 133
6-13 Using PageBase.CurrentUser in HTML.. 134
6-14 Using AccessDenied to deny access to a user not logged-on. 135
6-15 Using PageBase.GetChildren in a code-behind file for a Web Form. 135
6-16 Using PageBase.GetPage and PageBase.CurrentPage to retrieve PageData information for
the page specified in the attribute EventsContainer. 136
6-17 Using GetPage to retrieve the PageData object for the current page. 136
6-18 Using PageBase.QueryDistinctAccess. . 136
6-19 Web Form which inherits from EPiServer.SimplePage. 137
6-20 Using EditPage.IsNewPage in Profile.ascx.cs. 139
6-21 Tag for DefaultFramework in Page Template File. 140
6-22 Using HandleFormsLogin. 141
6-23 Using PageBase.CurrentLink (part of a function in the code-behind file for a User Control).
143
6-24 Using PageBase.CurrentUser (part of the code-behind file for a Web User Control). . . 143
6-25 Using ACL.ToRawACEArray to enumerate the Access Control Entries. 147
6-26 Using ACL.QueryDistinctAccess to check specific access for the current user. 148
6-27 Using ACL.QueryDistinctAccess with CurrentUser.Sid. 148
6-28 Using ACL.QueryDistinctAccess with CurrentUser.SidList. 148
6-29 Using EPiServer.Security.AccessControlList.AnonymousSidList. 148
6-30 Using PageData.Changed. . 149
6-31 Using PageData.ChangedBy.. 149
6-32 Using PageData.Indent with EPiServer.WebControl.Clear. . 149
6-33 Using the indexer PageData.Item and PageData.Property. 150
6-34 Using PageData.PageLink in HTML. 150
6-35 Using PageData.Item, PageData.LinkURL and PageData.PageName.. 151
6-36 Using PageData.ParentLink and PageBase.GetChildren. 152
6-37 Using PageData.ParentLink. 152
6-38 Using PageData.VisibleInMenu. 153
6-39 Using EPiServer.Global. . 154
6-40 Using EPConfig to display information about the start page for the Web site. 155
6-41 Using EPLang.Translate in a Web User Control (the ascx file). 155
6-42 Using EPLang.Translate in JavaScript. 155
6-43 Using EPLang.Translate in code. 156
6-44 Testing the prefix scheme in web.config. 157
6-45 Output from HTML code in example 6-44. 157
6-46 Adding the setting EPnImportantValue to the web.config file. 157
6-47 Adding the setting EPsInnocuousValue to the web.config file. 158
6-48 Using read-only attribute EPiServer.Global.EPConfig.Authentication. 161
6-49 Using read-only attribute UserControlBase.Configuration.Authentication.. 161
6-50 Displaying the name of all settings in the appSettings section–code-behind file. 161
6-51 Displaying the name of all settings in the appSettings section–HTML part. 162
6-52 Using EPiServer.Global.EPConfig instead of Configuration in the same code as 6-3. . . 162
339

6-53 Using Configuration instead of EPiServer.Global.EPConfig in the same code as 6-15. . 162
6-54 Using RootDir to specify location of style sheet. 162
6-55 Using RootDir to specify location of image. . 162
6-56 Using RootDir to specify location of image. . 162
6-57 Using EPiServer.EPConfig.Exists before reading a setting in web.config. 163
7-1 Using templated control DataList. 170
7-2 Pseudo code for templated control with an imaginary foreach statement. 170
7-3 Using EPiServer templated control NewsList. . 171
7-4 Clear control object using in HTML. 172
7-5 HTML IMG tag equivalent to Clear control object. 173
7-6 Clear control object using in HTML. 173
7-7 Using HasChildren attribute to control attribute Clear.Visible. 173
7-8 Using Content control in a Page Template File. 174
7-9 Code-behind file from a Framework Definition File. 175
7-10 ContentFrameworkSelector in Calendar.aspx. 175
7-11 ExplorerTree in the code-behind file. 177
7-12 HTML code needed for ExplorerTree.. 177
7-13 TopMenu.ascx. . 179
7-14 TopMenu.ascx. . 179
7-15 HTML code to render NewsList control (from the Mimic start page). 180
7-16 EPiServer.WebControls.PageList used on a Web Form. . 182
7-17 Using EPiServer.WebControls.PageList in Web User Control Search.ascx. 183
7-18 Menu.ascx.cs . 187
7-19 Menu.ascx. 188
7-20 Menu.ascx in much simplified form.. 190
7-21 Using EPiServer.WebControls.Property instead of HTML anchor tag. 191
7-22 Using a Property object to display contents of Property MainBodyHeading. 192
7-23 Display the name of the page. . 192
7-24 Using Property inside a templated control. 192
7-25 Using Container inside a templated control. 192
7-26 Switching off DOPE support for an EPiServer Property. 193
7-27 Using PropertySearch, PropertyCriteriaControl and PageList to produce a list of pages meet-
ing certain criteria. 193
7-28 Using PropertyCriteria when searching for Web Pages by their name (from tem-
plates\Units\AlphanumericListing.ascx.cs). . 195
7-29 AlphanumericListing.ascx.. 196
7-30 Use of EPiServer.WebControls.Region in a Framework Definition File. 197
7-31 Nested Region control objects. 197
7-32 HTML contents of Page Template File SiteMap.aspx. 198
7-33 Using EPiServer.Translate in HTML part of a form or control. 199
7-34 Using Translate attribute in an ASP.NET control.. 199
8-1 Code for class BackgroundColourType class inheriting from PropertyString.. 203
8-2 Code for class MailToUrl class inheriting EPiServer.Core.PropertyString. 205
8-3 CustomValidatorControl CustVal introduced (compare example 8-2). 206
8-4 MenuList (EPiServer.WebControls.MenuList) using Start page as a starting point of a listing.
207
8-5 Custom Filter Class CustomFilterOnlyMothers. . 208
340

8-6 Code connecting the Custom Filter CustomFilterOnlyMothers to the PageList control Cus-
tomFilterPageList. 209
9-1 Using EPDataFactory in non-Content Framework Web Form Mobile.aspx. 212
9-2 Statistics example, from the SDK help file (EPiServer4SDK.chm). 215
9-3 Using DataFactory.Delete in an EPiServer Web User Control to delete the current page.. .
215
9-4 Using FindPagesWithCriteria to find pages that were published during the last seven days.
216
9-5 Function SavePage which saves newly created discussion forum postings. 218
9-6 Using EPiServer.DataFactory.Save. . 219
9-7 Using CreatingPage.. 219
9-8 Using EPiServer.EPDataFactory.SavingPage in Global.asax.cs. 220
9-9 Using EPiServer.EPDataFactory.SavingPage in Global.asax.cs to convert MainBody. . . 221
9-10 Code to retrieve Web pages from EPiServer via its Web Services interface. 223
9-11 Exporting a single Page Type using EPiServer.Enterprise.DataExporter. 229
9-12 Importing a single Page Type using EPiServer.Enterprise.DataImporter. 229
9-13 Code on the exporting side to synchronize pages between Web sites.. 231
9-14 Code on the importing side to synchronize pages between Web sites. 232
10-1 Accessing a custom personal property (from EPiServer4SDK.chm).. 238
10-2 Accessing a custom personal property linked to the current page (from
EPiServer4SDK.chm). . 238
10-3 Enumerating all properties for the currently logged-on user. 239
10-4 Enumerating all properties for the current page for the currently logged-on user. . . . 240
10-5 Using EPiServer.Personalization.PersonalizedData.Load (from Profile.ascx.cs). 240
10-6 Loading PersonalizedData for the currently logged-on user. 241
10-7 Code from the code-behind file of Web Form NewsGroupList.aspx.. 241
11-1 ScheduledPlugIn attribute added to class TellTime.. 245
11-2 ScheduledPlugIn attribute added to class TellTime.. 245
11-3 Public parameter-less string method Execute returning the current time. 245
11-4 Complete TellTime class. . 245
11-5 Code to implement a custom scheduled job. . 247
11-6 Class NewlyCreatedPages written in pseudo code. . 249
12-1 Enumeration of handling file systems and their settings. 263
12-2 Using EPiServer.FileSystem.UnifiedDirectory.GetDirectories method.. 263
12-3 Using EPiServer.FileSystem.UnifiedDirectory.GetFiles method. 264
12-4 Using EPiServer.FileSystem.UnifiedDirectory.UnifiedFile.QueryAccess method. 264
12-5 Using EPiServer.FileSystem.UnifiedDirectory.UnifiedFile.Summary property. 264
12-6 Using EPiServer.FileSystem.UnifiedSearchQuery.Search. 265
13-1 The GuiPlugInAttribute for ActionWindowSimpleton. 275
13-2 The JavaScript to add to the HTML part of ActionWindowClock. 276
13-3 The code-behind file for ActionWindowClock Web User Control. 276
13-4 The GuiPlugInAttribute for EditPanelSimpleton. . 277
13-5 HTML part of EditPanelPageInfo.. 278
13-6 The code-behind file for EditPanelPageInfo. 279
13-7 The GuiPlugInAttribute for EditTreeSimpleton. 280
13-8 HTML part of EditTreeSimpleton.. 280
13-9 HTML Part of EditTreeMyPages.ascx. 281
341

13-10 Code-Behind File for Web User Control EditTreeMyPages. 281
13-11 The GuiPlugInAttribute for SystemSettingsSimpleton. 283
13-12 HTML part of SystemSettingsSimpleton.. 284
13-13 Code-behind file for SystemSettingsSimpleton. 284
13-14 HTML part of System setting area plug-in WebConfigEditor. 285
13-15 Code-behind file for System setting area plug-in WebConfigEditor. 286
13-16 The GuiPlugInAttribute for AdminMenuSimpleton.. 291
13-17 Declaration of EPiServer.WebControls name space in the HTML part of the Web Form Ad-
minMenuRecentlyCreatedList.aspx. 292
13-18 EPiServer.WebControls.DataList added to the Web Form AdminMenuRecentlyCreat-
edList.aspx. 292
13-19 Complete HTML part of AdminMenuRecentlyCreatedList.aspx. 292
13-20 Code-behind file for Web Form AdminMenuRecentlyCreatedList. 293
13-21 Style sheet specification line on the header of an Admin mode Web Form. 295
13-22 Style sheet specification added to the header section of AdminMenuRecentlyCreatedList.as-
px. 295
13-23 Finalised HTML part for AdminMenuRecentlyCreatedList.aspx. 295
13-24 EPiServer.Editor.Tools.IInitializableTool.Initialize function. 301
13-25 Skeleton DHTML Editor extension plug-in. 301
13-26 The GuiPlugInAttribute for SystemSettingsSimpleton. 302
13-27 Class DhtmlEditorSimpleton inherits EPiServer.Editor.Tools.ToolBase. 302
13-28 Client-side script in the constructor for DhtmlEditorSimpleton. 302
13-29 Source code for plug-in class DhtmlEditorLetterToEntityVisible. 304
13-30 Desired JavaScript replace statements using ‘Æ’ directly.. 306
13-31 Client-side JavaScript for DhtmlEditorLetterToEntityVisible class. 306
13-32 Source code for DhtmlEditorLetterToEntityCovert.cs.. 308
13-33 JavaScript file LetterToHtmlEntityCovert.js . 309
13-34 Enabling Shadow Folders in web.config. . 310
A-1 XML Name Space declaration for EPiServer Web Custom Controls. 314
B-1 SQL query to list all defined Page Types. 317
B-2 SQL Query to list all Page Template Files, Page Types and Web Pages.. 318
B-3 SQL query to list all Property Data Types. . 318
B-4 SQL Query to list all defined Property Types and their Data Type. 319
B-5 SQL query list all defined Page Types and their Properties. 319
B-6 SQL query to list all Dynamic Properties. 319
B-7 SQL query to list all Web Pages with their Properties and current values. 320
B-8 SQL query to list all user tables and their columns in a Microsoft SQL Server database.320
B-9 SQL commands to produce and execute a recursive stored procedure to display the Web
Page hierarchy in table tblPage. 321
B-10 Recursive stored procedure to list the hierarchy of all visible Web pages. 321
342

Index

Symbols
156

#
Translate (method) 156

(<%#> 132
/

Translate (method) 156
<%#> 132

A
About Face 2.0

The Essentials of Interaction Design 323
Action Window

Plug-in 275, 276
Active Directory 15
Admin mode

entering from View mode 17
Log on 17

AdminMenu
Plug-in 290, 291

Alan Cooper 323
AllowPageSync 230
An ounce of prevention is worth a pound of cure 95
ApplicationConfiguration

web.config 156
appSettings 156

appSettings 156
ASP.NET

Code-Behind File 6
Templated Controls

Container 170
ASP.NET 2.0 44

Content Pages 44
Master Pages 44

ASP.NET Code-Behind File 6
ASP.NET Controls 46
ASP.NET Web Custom Controls 46
ASPNET_WP.Exe

debugging 109

B
Bryce Cogswell 97

C
Call Stack 116
Carlton Egremont III 323
Cascading Style Sheets

and Div elements 42
episerver.css 29
in Framework Definition Files 42

Code Complete 119, 323
Code Optimisation 119
Code-Behind File 6
Cogswell, Bryce 97
Command Window

Command Mode and Immediate Mode 117
Configuration

web.config 156
Container 133
Container (Templated Controls) 170
Content Pages (ASP.NET 2.0) 44
Controls 46
Cooper, Alan 323
CSS. See Cascading Style Sheets
CSS2. See Cascading Style Sheets
Cure 95
Custom Controls 46
Custom Filters 207

D
Data Binding Expression Syntax 132
Data Types

Properties 31
Database
343

tbl UserProperty 238
tblUser 238

DataBind 132
Dave Solomon 97
David LeBlanc 323
Debugging

ASPNET_WP.Exe 109
DebugView 98
Design Patterns 323
Developing with EPiServer

knowledge needed 23
skills needed 23

DHTML Editor
Extensions 297

Div Elements
in Framework Definition Files 40

E
Edit mode

entering from View mode 17
Log on 18
Property Data Types 18

Edit Panel Tab Strip
Plug-in 277, 278

Editor for web.config 285
EditTree Tab Strip

Plug-In 279, 280
Egremont, Carlton III 323
ElektroPost.Licensing.dll 15
ElektroPost.Win32.dll 15
EPiServer

DLL
ElektroPost.Licensing.dll 15
ElektroPost.Win32.dll 15
EPiServer.CodeBehind.dll 15
EPiServer.dll 15
EPiServer.Enterprise.dll 15
EPiServer.Scheduler.WKTL.dll 15
EPiServer.SchedulerSvc.exe 15
EPiServer.Workflow.dll 15
EPiServerSample.DLL 11
ldapper.dll 15

groups
WebAdmins 16, 47
WebEditors 18, 47

EPiServer Property

Value must be entered 26
EPiServer.CodeBehind.dll 15
EPiServer.css 29
EPiServer.DataFactory

Events 219
EPiServer.dll 15
EPiServer.Enterprise.dll 15
EPiServer.Global.EPLang 155
EPiServer.PlugIn 269
EPiServer.Scheduler.WKTL.dll 15
EPiServer.SchedulerSvc.exe 15
EPiServer.Workflow.dll 15
EPiServerSample.DLL 11
EPLang 155

Translate (method) 155
XML XPath 155

Erich Gamma 323
Events

EPiServer.DataFactory 219
Export 226

F
FileMon 98
Filters 207
Fowler, Martin 96, 323
Framework Definition Files

Div Elements 40

G
Gamma, Erich 323
Global

EPLang 155
GUI Plug-Ins

Trouble-shooting 296

H
Helm, Richard 323
Howard, Michael 323
HTML

Div Elements
in Framework Definition Files 40

HTML Div Elements
in Framework Definition Files 40
344

Index
I
IInitializableTool 301, 305
Import 226
Translate (method)

XLM XPath
XML

XPath 155

J
Jackson Structured Programming, JSP 119
Jackson, Michael 119
JavaScript 22
John Vlissides 323
Johnsson, Ralph 323
JSP 119

L
Language files

languageEN.xml 29
templateLanguageEN.xml 29

LDAP 15
ldapper.dll 15
LeBlanc, David 323
Lightweight Directory Access Protocol, LDAP 15
Log on

Admin mode 17
Edit mode 18

Logging 118

M
Mark Russinovich 97
Martin Fowler 96, 323
Master Pages (ASP.NET 2.0) 44
McConnell, Steve 119, 323
Michael Howard 323
Michael Jackson 119
Mr. Bunny’s Guide to ActiveX 323

N
Name Spaces

EPiServer.PlugIn 269
NProf 120
NProfiler 120

O
Optimisation 119
Optimising Performance 119
Ounce 95

P
Page Type

Properties 30
Data Types 31

Value must be entered 26
Page Type Properties 30

Data Types 31
PageTemplateContainer 133
Performance Optimisation 119
Pound 95
Prerequisites 23
Prevention 95
Properties 30

Data Types 31
Property Data Types

Edit mode 18

R
Ralph Johnsson 323
Really Simple Syndication (RSS) 136
Refactoring

Improving the Design of Existing Software 323
RegMon 98
Reimann, Robert 323
Richard Helm 323
Robert Reimann 323
RSS (Really Simple Syndication) 136
Rules of Optimisation 119
Russinovich, Mark 97

S
Settings

web.config 48
Shadow Folders 310
Solomon, Dave 97
Steve McConnell 119, 323
StringBuilder 102
Style sheets. See Cascading Style Sheets
Synchronizing Pages 230
345

SysInternals 97
System Settings

Plug-in 283, 285

T
tbl UserProperty 238
tblUser 238
Templated Controls

Container 133, 170
PageTemplateContainer 133

Tracing 103
Translate (method) 155

V
Value must be entered 26
View mode

entering Admin mode 17
entering Edit mode 17

Visual Studio .NET
debugging

attaching to ASPNET_WP.Exe 109
Vlissides, John 323

W
Web Custom Controls 46
web.config 48, 156

appSettings 156
Web.config Editor 285
WebAdmins 16, 47
WebEditors 18, 47
Whidbey (ASP.NET 2.0) 44
Windows

groups
WebAdmins 16, 47
WebEditors 18, 47

Writing Secure Code 323

X
XML Files

languageEN.xml 29
templateLanguageEN.xml 29

XML Web Services 221
XMLComp 97
346

	by Rolf Åberg
	© Copyright 2004, ElektroPost Stockholm AB
	mailto:info@episerver.com
	http://www.episerver.com
	Developing Solutions with EPiServer
	ISBN 91-631-5351-3
	© Copyright 2004 ElektroPost Stockholm AB, mailto:info@episerver.com
	Published by:
	ElektroPost Stockholm AB
	All rights reserved. Without limiting the the rights under copyright reserved above, no parts of this publication may be reprodu...
	First published 2004
	Författares Bokmaskin, Stockholm 2004
	Set in 11/13 pt Garamond, headings in Tahoma.
	Contents
	Table of Contents
	Contents iii
	Table of Contents v
	Foreword xix
	1 Windows Development and ASP.NET Basics 1
	2 EPiServer Overview and Operation 13
	3 Developing with EPiServer 4: Basic Insights 23
	4 Mimicking the Example Web Site 57
	5 Avoiding Errors, Testing and Debugging 95
	6 EPiServer Base Classes and Interfaces 125
	7 EPiServer Web Controls 165
	8 Custom Property Data Types and Filters 201
	9 Data Modelling 211
	10 Personalization 235
	11 Job Scheduling 243
	12 File and Folder Objects 253
	13 Extending EPiServer 267
	A Finding Information 311
	B Database Queries 315
	C Developers’ Book List 323
	D ANSI To HTML Entity Table 325
	List of Figures 329
	List of Tables 333
	List of Examples 337
	Foreword

	It is the ability of the Web developer to understand and make the most of any development product that enables them to create th...
	The information solutions market place is crowded by many suppliers and products displaying an array of more or less mature offe...
	A book cannot work miracles but it will make your development efforts easier. Our goal is to shed light on EPiServer development...
	1
	Windows Development and ASP.NET Basics

	In this, the first chapter, we’ll begin with an introduction to Windows application development and ASP.NET overview.
	If you’re thinking about skipping this chapter at least take a good long look at figure 1-6 on page 10.
	How Does EPiServer Work Its Magic?
	ASP.NET Web Forms Are Event-Driven, Making Them Appear Much Like Windows Forms
	Before Visual Basic was introduced this message handling was prominent when developing Windows applications: according to develo...
	Figure 1-1: Comparing Message Passing, to the left, and Event Driven programming, to the right.
	Example 1-1: Pseudo code for the message handling loop in early Windows applications.

	For event-driven applications the story is very different. There’s no ‘visible’ message loop, there’s no unpacking of strangely ...
	One way to look at event-driven programming, with a message passing twist, would be to say that the message handling loop is mov...
	The event-driven paradigm is very much alive in Microsoft .NET Framework, which is obvious in both Visual Basic .NET and C#.
	Translate the Event-Driven Model to the Web, Do Not Create an X Window System

	In doing this there’s a very big performance issue to consider: mouse movements cannot be expected to be handled by the server! ...
	Handling Events on the Server
	Example 1-2: Declaration of an ASP.NET Button control.
	Example 1-3: Declaration of an HTML Button control.

	Using Forms Help Preserve Visual Consistency
	Example 1-4: Form created by Visual Studio .NET.

	When an ASP.NET Button is ‘clicked’ the whole contents of the form is shipped off to the server for processing. For ASP.NET controls this processing takes place in the compiled code-behind file.
	Controls that allow the user to change an attribute, such as filling in text in a text box or checking a check button preserve their setting by simply changing the HTML that is posted back to the client to reflect the current ‘settings’.
	ASP.NET View State Variable ViewState

	The contents of view state variables are preserved in a hidden input HTML field.
	Example 1-5: Actual View State variable.

	Example 1-5 shows a very short view state string; they can easily grow to several kilobytes. The example EPiServer Web site has a view state of about 6 000 bytes when the start page is first loaded.
	EPiServer uses the view state variable. Values, settings, in EPiServer (EPiServer.WebControls.Property) have a standard boolean ...
	Example 1-6: Wrapping view state EditMode in a property function in Profile.ascx.
	Avoiding Re-Initialising with Every Form Posting: IsPostBack

	IsPostBack is used to load initialisation data only once, among other uses.
	Example 1-7: Typical use of IsPostBack in EPiServer solutions.
	Events Are Handled in Compiled Code on the Server

	ASP.NET Web Forms files have the standard extension ‘aspx’ and its supporting code file has the same name and a second extension...
	‘Code-Behind File’ Is Microsoft’s Term
	Example 1-8: C# code in the code-behind file to handle the Click event for an ASP.NET Button.
	Example 1-9: C# code in the source file to handle the Click event for a Windows Forms Button.
	When Compiled Code-Behind Files Form a Dynamic Link Library (DLL)
	Figure 1-2: Code-behind files for an ASP.NET application are compiled into a dynamic link library file.
	Figure 1-3: Clicking an ASP.NET Button on a client results in handling code being called in the code-behind DLL on the Web server.

	The ASP.NET Magic: Going from a Web Form to an HTML Page
	Figure 1-4: Linking file extension to handler (picture edited).

	So the request for an aspx files is handed off to ASPNET_ISAPI.DLL, then what? Basically the request is passed from ASPNET_ISAPI...
	Figure 1-5: The ASP.NET chain from client to server and back.
	Going from an EPiServer Web Page to an HTML Page in the Visitor’s Browser

	EPiServer Page Templates and Framework Definition Files are not plain vanilla ASP.NET object classes since they do not directly inherit from the same classes as do Web Forms and Web User Controls. Instead they inherit from EPiServer.PageBase.
	Table 1-1: Inheritance for EPiServer object types.
	Figure 1-6: The ASP.NET and EPiServer chain from client to server and back.
	1. The Page Template File is parsed and compiled (only occurs the first time the page is executed).
	2. The contents of the Framework Definition File are read and inserted into the Page Template File.
	3. The OnInit method of the controls inserted in step 2 is called.
	4. The OnInit method of the Framework Definition File is called.
	5. The OnInit method of the Page Template file is called, causing page data to be loaded, user access permissions checked, etc.
	6. The Page Load event for the Page template File is triggered.
	7. The Page Load event for the various controls initialized in step 3 is triggered.
	8. The HTML results are sent back to the caller.
	You’ll Be Seeing EPiServerSample.DLL a Lot, Not EPiApp.DLL
	2
	EPiServer Overview and Operation

	EPiServer Overview
	EPiServer 4 Is Only the Latest Incarnation
	Given the long lineage of EPiServer and the vast possibilities of Microsoft .NET we at ElektroPost hope that you will enjoy using EPiServer as much as we’ve enjoyed creating it!
	The goals we set for EPiServer 4 included:
	Relation Between EPiServer and Internet Information Services, IIS
	EPiServer 4 Is Backwards Compatible

	If the customer so wishes, an existing solution can be gradully upgraded to EPiServer 4. Part of the credit for this goes to Microsoft .NET Framework which allows for both ASP and ASP.NET techniques to cohabit the same application.
	EPiServer’s View of People

	Add to this the EPiServer 4 developer and we have a full complement of roles. As a developer you will certainly play all parts from time to time.
	Division of Responsibilities between Roles

	Typically, but in no way demanded by EPiServer, a Web site administrator is either an IT employee or a ‘power user’, as the role...
	EPiServer DLL and Executable Infrastructure
	Table 2-1: EPiServer DLLs and executables.

	EPiServer Operation
	EPiServer Is a Trifurcated Application
	Edit mode is used by EPiServer Editors, the people responsible for adding and maintaining content for the Web site.
	Admin mode, of course, is for EPiServer Administrators, the people who busy themselves with matters such as ‘who can do what to ...
	All Modes Are Multi-User

	In day-to-day operation, Administrators and Editors go about their chores. Administrators mainly busy themselves with access permissions and logins whilst Editors merrily add new, change or remove old content to/from the Web site.
	From an EPiServer developer point of view the most important thing about what Administrators and Editors do is Page Types and their Properties. Typically this forms only a small part of the Administrators’ work load but all of what Editors do.
	The Most Important Admin Mode Assignment
	Editor Efforts Are Crucial
	Admin Mode

	There are two ways to enter Admin mode in EPiServer:
	The tool-bar in the upper left corner of the left pane in Admin mode is somewhat frugal as it contains only three tools.
	Figure 2-1: Admin mode tool-bar (EPiServer version 4.2).
	Figure 2-2: Tools and Page Types in the left pane of EPiServer 4.2 Admin mode (pictures have been re- arranged).
	Names of Property Data Types Are Different in Admin Mode
	Table 2-2: EPiServer Property Data Types.

	Edit Mode

	Entering Edit mode in EPiServer is very similar to entering Admin mode:
	Figure 2-3: EPiServer Edit mode for the example Web site, start page being edited.
	Naming Web Pages
	Tools

	The tool-bar in EPiServer 4.2 Edit mode has eleven tool buttons.
	Figure 2-4: EPiServer 4.2 Edit mode tool-bar.
	Page Tree
	Figure 2-5: The Web Page Tree in EPiServer Edit mode (from the example Web site).
	Sort Order in The Page Tree

	EPiServer Handles Versions Automatically
	Built-In Properties in Edit Mode
	Figure 2-6: The Start page for the example Web site in Edit mode.

	The Page Chain, Tools and Techniques Used
	Figure 2-7: Techniques and tools used in the operation of an EPiServer site.

	Suppose we start with the Web viewer, after all, that’s why we’re here really, as all efforts centre around providing the best p...
	When the layout and other requisites of the site have been determined, the developers go to work producing Page Template Files u...
	3
	Developing with EPiServer 4: Basic Insights

	In order for you to be successful in studying this book and its examples we believe that a working knowledge of Microsoft .NET Framework, ASP.NET and C# is necessary. A lot of what you need to know about EPiServer is presented in the book.

	EPiServer Structure and Object Model
	EPiServer implementations centre around four very important classes of both ASP.NET and non-ASP.NET objects:
	Framework Definition Files
	Regions Are Central

	Relationship Between Page Templates, Page Types and Web Pages
	Figure 3-1: Relationship between Page Templates, Page Types and Web Pages.

	Page Templates and Framework Definition Files are created using Visual Studio .NET, Page Types and Web Pages are made in EPiServer Admin mode and Edit mode, respectively.
	Framework Definition Files and Page Templates Are Created in Visual Studio .NET

	That’s two of the few things a developer has to consider when starting to develop for and with EPiServer. ‘Using’ the appropriate name spaces is also important. It turns out that the name spaces EPiServer and EPiServer.Core go a long way.
	Page Types Are Created in EPiServer Admin Mode

	EPiServer has a number of built-in data types for Properties and also a whole infrastructure in place to make it easy for Editor...
	It’s also in Admin mode that the workings of the database are more obvious, as Page Types are stored in the database along with ...
	Web Pages Are Created in EPiServer Edit Mode by EPiServer Editors

	The bulk of the data in the database is the result of Editors’ labour. The Web Pages they create are nothing more than records i...
	Remember, only the values of Properties are handled in Edit mode; there is no provision for removing or deleting Properties in E...
	The Web Pages Live in a Web Page Tree
	Figure 3-2: Web Page Tree.

	As the Web Page Tree is of paramount interest to EPiServer solution developers, there are two properties that are used to point ...
	Editors have full control of the Page Tree when in EPiServer Edit mode. Web Pages can be moved around, deleted and new Pages may be created anywhere in the Page Tree.
	EPiServer 4 Architecture
	Figure 3-3: EPiServer 4 Architecture.

	A very important aspect of the database is that it allows EPiServer to handle several versions for Web Pages.
	EPiServer Architecture and Folder Contents

	Let’s try to mentally connect the architecture to the folders and files created when installing EPiServer and letting it configure the example Web site. Here are the ‘root’ sub-folders and the files in the root folder:
	Figure 3-4: EPiServer folder tree and files in root folder.
	Table 3-1: EPiServer folder contents.
	The Very Important templates Folder

	In the templates folder there are about forty ASP.NET Server Pages (aspx) and their corresponding C# code-behind files. In templ...
	All in all, the contents of these folders provide a rich source both of information and examples to be used when developing solutions with EPiServer 4.
	EPiServer Content Framework: Combining Pages and Contents to Make a Web Site

	The EPiServer Content Framework has been designed with these objectives in mind (among others):
	A Visual Layout Divided

	Page Template Files are not obliged to use Framework Definition Files; quite a few of the ones shipped with EPiServer do not. Consistently, Page Definition Files that forego using Framework Definition Files are themselves well-formed HTML files.
	Giving yourself a little click-around tour on the example Web site should be convincing. It’s evident that some parts of the Web...
	As shipped, EPiServer 4 contains four Framework Definition Files and about forty Page Template Files (including Default.aspx in the root folder).
	Separate Presentation from Content: EPiServer Page Type Properties

	EPiServer Page Type Properties come in two flavours:
	Properties Always Have a Data Type
	Table 3-2: EPiServer Property Data Types.

	In addition to the built-in Property types, it’s always possible to create new types by inheriting from the existing ones. Using the example Web site as an illustration, it defines eleven custom Property types.
	Built-in Properties
	Table 3-3: Built-in Properties for Page Types and thus Web Pages.

	User-defined Properties: Static Properties
	Table 3-4: Common static user-defined properties.

	User-defined Properties: Dynamic Properties
	Dealing with Properties in Code
	Example 3-1: Displaying the value of built-in Property PageName in HTML code.
	Example 3-2: Displaying the value of user-defined Property MainIntro in HTML code.
	Example 3-3: Displaying the value of built-in Property PageName in C#.
	Example 3-4: Displaying the value of user-defined Property MainIntro in C#.
	Example 3-5: Using IsDynamicProperty for user-defined Property MainIntro in C#.
	Boolean Properties
	Interaction between Web Pages and the Database

	It all revolves around properties as defined by EPiServer. These properties appear in several shapes and forms. Properties can b...
	When Editors go about their jobs, it is the contents of properties that they deal with; they are never allowed to affect which properties are available for certain Page Types.
	The physical separation of content and presentation structure is maintained by keeping all Web Forms and their code at the Web server and content in the database. In particular the table tblProperty contains all properties for a particular page.
	Figure 3-5: Cooperation between structure and content.
	Using Web User Controls in Framework Definition Files and Page Template Files

	At the core of every EPiServer-based Web site we find quite simple structures, at least from an ASP.NET perspective. Typically t...
	The relation between a Framework Definition File and Page Template Files is depicted in figure 3-6.
	Figure 3-6: Framework Definition Files ‘declare’ regions that are used by Page Template Files.

	Framework Definition Files are charged with the task of visual design, they are often constructed as standard HTML tables (using...
	Purpose of EPiServer Framework Definition Files

	Take a look at this figure:
	Figure 3-7: Start page of the example Web site to the left and the tables from its Framework Definition File to the right.

	As you can see in figure 3-7 there is a close correspondence between the layout in the start page of the example Web site and the layout of the Framework Definition File. (Please make some allowance for the non-breaking spaces that were added.)
	EPiServer Regions

	An EPiServer Region can span one table column (<td>), one row (<tr>) or even a whole table or more. Regions can be nested to any level desired. They are implemented as ASP.NET Custom Controls.
	Regions are very easy to define in Framework Definition Files. First you state your intention to use the name space EPiServer.WebControls and then define Regions just like HTML/XML tags.
	Example 3-6: Defining an EPiServer Region in a Framework Definition File.
	EPiServer Regions Are Used by Means of the Content Class

	Example 3-7: Regions are used by a Content class object.
	Both the Region and Content Classes Are Part of EPiServer.WebControls

	Page Template Files
	Using HTML Tables for Layout
	A Very Simple Framework Definition File Using HTML Tables for Layout
	Example 3-8: Simple Framework Definition File using HTML tables.

	Since all the regions are defined inside table cells, and thus inside an HTML table, whatever we choose to place in those regions will also be inside table cells.
	A Very Simple Page Template Using the Very Simple Framework Definition File
	Example 3-9: Page Template File using the HTML Table based Simple Framework Definition File.

	Using Visual Studio .NET to test run the result looks like this:
	Figure 3-8: Effect of using HTML Tables based Framework with simple Page Template.
	Accessibility Considerations Starting with EPiServer 4.3

	Support for formatting with H tags (H1, H2, etc.) in the editor has been added. Simply set your style rules as H1 or H1.Heading1 depending on your needs.
	Using HTML Div Elements for Layout
	Example 3-10: Simple Framework Definition file based on HTML Div elements.

	Changing three lines in the Page Template File listed in example 3-9 lets us use the Div based Framework Definition File.
	Example 3-11: Original Framework usage lines in Page Template File.
	Example 3-12: Changed Framework usage lines in Page Template File.
	Figure 3-9: Effect of using HTML Div elements based Framework with simple Page Template.

	Inner Make-Up of a Page Template File which Doesn’t Use a Framework Definition File
	Example 3-13: Parts of the Page Template File Login.aspx

	EPiServer Content Framework Is Not Unlike ASP.NET 2.0 Master Pages and Content Pages

	‘You’ll create a Master Page for the site layout and design and create Content Pages for each content resource, somehow connecti...
	This sounds a lot like and will work a lot like EPiServer Content Framework and we hope that this gives you an extra incentive to start using Framework Definition Files and Page Template Files.
	EPiServer Name Spaces

	A .NET Framework name space is simply a way to group classes, delegates, structures, constants, enumerations and other such information. It is up to the developers to make this grouping as logical and consistent as possible.
	These are some of the name spaces found in EPiServer 4.2:
	EPiServer
	EPiServer.Core
	EPiServer.Core.Html
	EPiServer.Filters
	EPiServer.Personalization
	EPiServer.PlugIn
	EPiServer.Security
	EPiServer.SpecializedProperties
	EPiServer.WebControls

	The classes in EPiServer.WebControls are ASP.NET Web Custom Controls, which are like ASP.NET Web User Controls but they have onl...
	Permissions and User Identities Are Handled By EPiServer (and You)
	Figure 3-10: Handling access permissions in EPiServer Admin mode.

	Should your Web site be one that’s serving the Internet, you probably won’t have much need to change the access permissions from...
	User Identities and Permissions Are Easy to Handle In Code

	Interface IPrincipal declares the interesting property Identity and method IsInRole. From Identity, the name of the user account is retrieved by calling Identity.Name; group membership is tested with the boolean function IsInRole.
	For testing permissions, there is a method called CheckAccess. Also, if you want to deny the current user access for some reason you can call the method AccessDenied.
	Example 3-14: Using PageBase.AccessDenied.
	EPiServer System Settings in the web.config File

	In the section appSettings we find more specific EPiServer settings, some of which are described in table 3-5.
	Table 3-5: EPiServer settings in web.config (not comprehensive).
	Figure 3-11: EPiServer System Settings (from the Example Web site).
	Accessing System Settings from Code

	Web Pages created from EPiServer Page Template Files are descendants of the class EPiServer.PageBase. Among the attributes for PageBase is Configuration, which is of the same type as EPConfig.
	In other contexts, you might want to utilise the Page property (common to all Web pages descending from System.Web.UI.Control), ...
	Several of the system settings are also implemented with their own identifiers, e.g. RootDir and StartPage. In other words, Conf...
	Some examples might help to clarify things:
	Example 3-15: Using EPConfig in the code-behind file for a Web User Control (ascx.cs file).
	Example 3-16: Using EPConfig in the code-behind file for a Web Form (aspx.cs file).
	Example 3-17: Using EPConfig in HTML for a Web User Control (ascx file).
	Example 3-18: Using EPConfig in the code-behind file of a Web User Control (ascx.cs file).
	Example 3-19: Using Configuration in the code-behind file of a Web User Control.
	Example 3-20: Using Configuration in the code-behind file of a Web User Control.
	Example 3-21: Using Configuration in JavaScript in an ASP.NET Web Form (for EPiServer Edit mode).
	Example 3-22: Using Configuration in an ASP.NET Web Form (for EPiServer Edit mode).
	Example 3-23: Using Configuration in a code-behind file that’s a descendant of EPiServer.PageBase
	Example 3-24: Using Configuration in HTML.
	Example 3-25: Using the Page property in HTML.
	Example 3-26: Using the Page attribute in a code-behind file.
	You Can Add Your Own Settings

	EPiServer Development
	Developing EPiServer Solutions is a Little Different to Developing ASP.NET Solutions
	Tools Needed
	Developing ASP.NET Solutions
	Developing Solutions with EPiServer

	EPiServer’s Built-In Web User Controls
	You will also find a handful of Web User Controls in the admin and edit folders. These controls are used by EPiServer Admin and Edit modes, respectively.
	EPiServer Base Classes and Interfaces

	Obviously the EPiServer Base Classes are important to an EPiServer developer. Among the Base Classes, perhaps the two most important are PageBase and PageData
	The PageBase class is an abstract class used as a base class for one of the more specialised derived classes like SimplePage or ...
	Template logic often uses the PageBase class members to retrieve information about other aspects of the EPiServer solution, such...
	The PageData class contains information about a specific page. This includes the name of the page (PageName), reference (PageLink), URL (LinkURL) and more.
	Other useful classes are PropertySearch and Content.
	When using classes in EPiServer.WebControls, a reference to the EPiServer WebControls schema must be added in order for Visual Studio .NET IntelliSense to work properly. The reference is often made part of an HTML Body tag or a Table tag.
	Example 3-27: A reference to EPiServer WebControls schema added to an HTML Body tag.
	Example 3-28: A reference to EPiServer WebControls schema added to an HTML Table tag.
	Extending EPiServer 4 Is a Lot Easier

	It should be evident from figure 3-3 that EPiServer itself is an ASP.NET application comprised of ASP.NET Web Forms pages (aspx ...
	One, somewhat over-simplified, way of describing EPiServer 4 would be to say that it is a .NET Framework Assembly written in C# ...
	Performance Considerations
	4
	Mimicking the Example Web Site

	Let’s Create a Web Site by Mimicking the Example Site
	During the site creation process, you’ll be exposed to, and guided through, the Admin and Edit parts of EPiServer. In fact, crea...
	Our two Web sites will be called Example and Mimic respectively. We’ll start by creating and inventorying the Example Web site. We then create the Mimic Web site and make it look and act much like Example.
	To conclude the chapter, we’ll take a closer look at the Example Web site and see just how Framework Definition Files, Page Template Files, Web Controls and HTML cooperate.

	Game Plan
	As EPiServer Web sites revolve around page templates, page types, with their properties, and displayed pages, we’ll start with taking an inventory of all page types used in the example Web site.

	Install EPiServer 4 and Let It Create the Example Web Site
	It doesn’t matter whether you elect to create a new Web site or simply a new virtual folder. We installed to http://localhost/Example.
	So, please install your first copy of EPiServer. When EPiServer is installed, a Web page will be presented, headlined ‘Install b...
	Next we’ll be using EPiServer Admin and Edit modes to inventory the Example Web site.
	Inventory Example Web Site
	Figure 4-1: Example Web site in Internet Explorer.

	Page Templates, Page Types and Their Properties, Web Pages, Folders and the Database
	Page Templates which Really are Used in the Example Web Site
	Table 4-1: Essential Page Templates in the Example Web site.

	Page Types Are Created from Page Templates-Page Types Own Page Templates
	Figure 4-2: EPiServer Page Type viewed as ‘Queen of the hill’.
	Table 4-2: Page Types in the example Web site.
	Figure 4-3: Properties for example Web site showing Default.aspx to be the default Web page.
	Some Page Types Have Common Page Templates
	Table 4-3: Page Templates used to create more than one Page Type in the example Web site.

	Properties Used for Page Types
	Table 4-4: The most commonly used properties on Page Types.

	22
	15
	12
	9
	9
	7
	6
	6
	5
	5
	4
	4
	Dynamic Properties Used
	Table 4-5: Dynamic properties used in the example Web site.

	Properties Used on Start Page
	Table 4-6: Properties used on Page Type Start page (start page for the Web site Example).

	Web Pages Created from Page Types
	Figure 4-4: Example Web site in Edit mode, first level of page tree mostly expanded.
	Table 4-7: Page Types used to create more than one Web page for the example Web site.

	34
	8
	6
	6
	5
	5
	4
	3
	3
	3
	3
	2
	2
	2
	Folders and Database Tables Used

	So if Page Types and Web Pages don’t live in folders, presumably they live in the database? This is certainly true; Page Types l...
	Table 4-8: Page Templates, Page Types and Web Pages in folders and the database.
	-
	-
	-
	-

	Create the Mimic Web Site: Install a New Version of EPiServer, or Re-Install
	Please install a second copy of, or re-install, EPiServer. Name this second Web site/virtual folder Mimic. Instead of installing...
	Figure 4-5: Visual appearance of Web site when selecting ‘Only start page without any Page Types or content’.
	Inventory ‘Empty’ Web Site
	Page Templates, Page Types and Their Properties, Web Pages, Folders and the Database
	Properties Used on Page Type Start Page
	Table 4-9: Properties used on Page Type Start page.
	Dynamic Properties Used

	Web Pages Created from the Single Page Type

	Order of Business
	1. Create Dynamic Property ‘Global search page’, assign this to Start page and give it a value.
	2. Create the same Page Types that exist in the Example Web site
	3. Create the same Web Pages that exist in the Example Web site.

	Create and Use Dynamic Property ‘Global search page’

	Open up Mimic Admin mode, click on ‘Dynamic properties’ in the left pane and then on ‘Add property’ in the right pane. Assign Na...
	Figure 4-6: Dynamic Property MainSearchPage added.
	Create the Same Page Types That Exist in the Example Web Site
	We’ll Cheat a Little
	Create a Page Type to Hold Most Common Properties

	Open Mimic in Admin mode, click on ‘Create new page type’ in the left pane and then fill in the fields as follows::
	Table 4-10: Template Type information.

	We won’t add Properties in the same order as in table 4-4, but rather with an eye on how Editors use the properties, as the prop...
	When you’re ready, add the properties found in the list below in the same order to Template Type. Leave all properties under hea...
	Create Page Type ‘Ordinary web page’
	Create Page Types ‘Calendar’ and ‘Calender event’

	(In the Example Web site, this Page Type also has the ability to cater for recurring events; this possibility will be left as an exercise for the reader.)
	We will come back to Admin mode shortly, after a short interlude to create a few top-level Web Pages.
	Interlude: Create the Top-Level Web Pages

	Switch to Edit mode and create the following Web Pages, base all on Ordinary web page, in the same order as in the list. Right-c...
	Create a new child Web Page for Inspiration by right-clicking on Inspiration and then selecting Create new Web page in the short...
	Table 4-11: Important property settings for Calendar Web Page.
	Figure 4-7: Pointing the ‘Calendar’ Web page.

	Now that we’ve got peace of mind, let’s create some more Page Types.
	Create the Last Page Types

	Create a new Page Type based on News.aspx by copying Template Page:
	The next Page Type we’ll create is News page. This is based on Page.aspx.
	Create a new Page Type based on News.aspx by copying Template Page:
	One last Page Type to go. This Page Type we’ll be used for the Search function, so we can have the QuickSearch bar back on the start page. The Search Page Type will be based on the Page Template Search.aspx.
	Create a new Page Type based on News.aspx by copying Template Page:
	That means we’re done. Now we have all the Page Types we need to make Mimic look and behave a lot like Example. The Mimic Web site now comprises the following Page Types:
	Table 4-12: Page Types for the Mimic Web site.
	Create the Same Web Pages That Exist in the Example Web Site
	Putting the QuickSearch Bar Back on the Start Page

	To set the Dynamic Property, first select the Start page and then click on the Dynamic Properties tool button . Set ‘Global search page’ to point to the new Search Page. Click Save and make sure that the QuickSearch bar is now back on the Start page.
	Spreading The News

	Create a new Web Page of type News list and place it under Inspiration (select Inspiration, right-click and select ‘Create new’, click on Create in the right pane for Page Type News list.). Set the Properties to these values:
	Set up a Few Dates

	Create a couple of calendar events and place them all under Calendar in the Web Page Tree. As for dates, make sure that at least one of them is for the current month, since the Web User Control Calendar.aspx only displays events for the current month.
	Cleaning up the Start Page
	Final Result
	Figure 4-8: Final appearance of the Mimic Web site.

	Hopefully this first example has been successful in demonstrating EPiServer’s capabilities and familiarising you with Admin and Edit modes. There’s one thing more we can look at: how to clean up after ourselves.
	Removing Superfluous Web Page Versions

	In Edit mode, select the Start page in the Web Page Tree, left pane, and then select the Version list tab in the right pane. Del...

	A Closer Look at Frameworks and Page Templates in the Example Web Site
	Anatomy of an EPiServer Framework Definition File
	Web User Controls and EPiServer Base Classes in DefaultFramework

	Thirteen of the Web User Controls found in templates\Units are registered for use in the Framework Definition File DefaultFramework.ascx.
	Example 4-1: User Controls registered for use in DefaultFramework.ascx.
	Example 4-2: Name space EPiServer.WebControls registered for use in DefaultFramework.ascx.
	The HTML Tables in DefaultFramework

	Example 4-3: HTML table skeleton in DefaultFramework.

	In turn, the first line of the first table has two nested tables inside it.
	Figure 4-9: The nested tables in the first row of the outer table.

	Looking at only the nested tables in the third row of the outer table we notice that the outermost of those tables has two rows, the last of which is simply used as a footer (EPiServer:SiteFooter).
	Figure 4-10: The nested tables in row two of the outer table (region names included).
	EPiServer Regions

	No fewer than six regions are defined in DefaultFramework.ascx. No regions are defined to cover any of the two first rows in the first table so these are immutable.
	Figure 4-11: The six regions defined in Default Framework.ascx.
	Inside an EPiServer Page Template File
	Example 4-4: Part of default.aspx, the start page for the example Web site.
	Figure 4-12: Regions in DefaultFramework.ascx used by default.aspx.

	Framework Definition Files
	Page Template Files
	Looking into the Start Page, Default.aspx and DefaultFramework.ascx
	Looking into the Immutable Part of DefaultFramework.ascx
	Example 4-5: First row of outer table in DefaultFramework.ascx contains two nested tables.

	The most interesting elements have been marked with bold face.
	Remember, every Page Template using DefaultFramework.ascx will have the same functions and appearance in the first two rows of t...
	Setting the Table Background ‘background="<%=HeaderImage%>"’
	Figure 4-13: Picture used for background in the first table in the first row of the outer table in DefaultFramework.ascx.

	HeaderImage is a Dynamic Property (see table 4-5), but if you were to look at its value for the Start Page, ‘Welcome to EPiServe...
	Example 4-6: Property function HeaderImage in the code-behind file DefaultFramework.ascx.cs.
	Anchor ‘<a href='<%=EPiServer.Global.EPConfig.RootDir%>'>’ with an Image

	The visual part of the HTML anchor is: ‘<EPiServer:Clear width="300" height="70" runat="server" />’. Clear is an EPiServer class...
	Example 4-7: Actual HTML code resulting from DefaultFramework.ascx.

	The end result is a transparent area covering the text ‘EPiSERVER4’ in the upper left corner on the pages acting as a ‘homing device’.
	Using QuickSearch ‘<development:QuickSearch ID="QuickSearch" runat="server" />’

	In order to use the User Control QuickSearch.ascx, it must first be registered. This is done by including the line ‘<%@ Register...
	Example 4-8: Resulting HTML code when using QuickSearch.ascx.
	Web Pages As Menu: <development:TopMenu runat="server" id="TopMenu" />

	In this case, TopMenu.ascx is used in the second row of the inner-most table. This corresponds to the ‘empty’ row in the background picture in figure 4-13. This is the resulting HTML code:
	Example 4-9: HTML code when using TopMenu.ascx.

	That concludes our scrutiny of the first row of the outer table. The second row is processed in a jiffy, it looks like this: ‘<t...
	Use of Regions in DefaultFramework.ascx by Default.aspx Page Template
	News Items Go in the Left-Most Area, Region menuRegion

	Example 4-10: Declaration of EPiServer.WebControls in Default.aspx.
	Example 4-11: Declaration of NewsList in Default.aspx.
	Example 4-12: NewsList.NewsTemplate specification in Default.aspx.
	Region mainRegion Gets a Picture, a Heading and Some Text

	Example 4-13: Specification for mainRegion in Default.aspx.

	The first Property, StartPageImage, is not found in the Page Template Start page. As can be seen in listing 4-14, it is used as a property and we’re dealing with an property function from the code-behind file, Default.aspx.cs.
	Example 4-14: Extract from Default.aspx.cs, the code-behind file.

	Next we look at the Property MainBodyHeading, the second found in Default.aspx. It is dealt with in short order. The class EPiServer.WebControls.Property is used to simply insert the contents of MainBodyHeading at the current location in the HTML page.
	Third and last is PageBody, which is a User Control (PageBody.ascx).
	Example 4-15: Registration of User Control PageBody in Default.aspx.
	Example 4-16: The HTML part of User Control PageBody.ascx.

	Summarising the three Properties and the various retrieval methods used gives us table 4-13:
	Table 4-13: Retrieval methods used for three static Properties in Page Template Start.
	5
	Avoiding Errors, Testing and Debugging

	In this regard, C#, in its Visual C# .NET incarnation, is a comprehensive third-generation computer language that offers a sound...
	Before looking at debugging as such, we’ll provide you with some insights into both ASP.NET and EPiServer solution development that we have accumulated.

	Separate Presentation and Data
	Instead, what we propose is the EPiServer Content Framework. It provides for and encourages separation of presentation and data....
	ASP.NET Templated Controls Has Built-In Separation of Presentation and Data

	Most of the classes in EPiServer.WebControls are templated controls. Among the templated control classes in EPiServer WebControls we find:

	Express Your Intent Clearly in Code, Comment When You Must
	There are a couple of good ways to know if you need to improve your skills in this area: ask a colleague to read your source code and relate its purpose to you and also try reading some of your own source code which you haven’t touched for a few months.

	Testing Equals Module Testing
	Make Tests Easy, Easy to Interpret and Self-Documenting
	Have Your Code Write Data to Files, Compare Files between Versions of the Code

	We have such a tool, XMLComp.Exe, freely available at our Web site, www .episerver.com. In honour of Martin Fowler, the tool outputs ‘OK!’ and ‘!OK’, respectively (interpretation obvious).
	When Bugs Are Reported Start by Expanding the Test Suite

	Common Problems in ASP.NET Development
	Nevertheless, access permissions are almost always a fact of life for the applications that are developed. For ASP.NET applicati...
	As a part of an effort to track down a problem, there a few things you can do regarding the ASPNET account:
	Useful Tools

	There are three tools at SysInternals that you might want to take a look at:
	DebugView

	Calls to System.Diagnostics.Debug.WriteLine are displayed by DebugView, as they end up as calls to OutputDebugString.
	We do not recommend that you leave Debug output calls in your code when you’ve reached the production phase, as there is a small performance penalty, but in the testing and pre-production phase you will probably find DebugView quite useful.
	Figure 5-1: DebugView at work.
	FileMon

	‘FileMon monitors and displays file system activity on a system in real-time. Its advanced capabilities make it a powerful tool ...
	Figure 5-2: FileMon.Exe at work.
	RegMon

	RegMon works like a Registry access recorder. It records information about every access to the Registry including time, process ...
	You use RegMon to find out which Registry keys your EPiServer solution accesses and whether that access was successful. For each...
	‘Regmon is a Registry monitoring utility that will show you which applications are accessing your Registry, which keys they are ...
	Figure 5-3: RegMon.Exe at work.

	The Importance of Knowledge and Experience
	As for Microsoft .NET, ASP.NET and C# .NET, there seem to be more books published than there are days in a year, so a lack of ma...

	Microsoft .NET Framework and Visual C# .NET
	Boxing Is Very Popular
	Example 5-1: Effects of treating a simple variable as an object in Microsoft .NET.

	For performance reasons, variables of simple data types aren’t actually instantiated objects until they are treated as such. In this example:
	Example 5-2: Variables of simple data types behave as objects when treated as such.
	Use StringBuilder Instead of String, But Not Always

	There’s one big caveat though which has to do with boxing in Microsoft .NET Framework. It’s extremely time-consuming to concaten...
	Example 5-3: String handling using String objects.

	Running the code in example 5-3 takes 95 seconds, i.e. 0.95 milliseconds per lap. Using StringBuilder we see quite different results:
	Example 5-4: String handling using StringBuilder objects.

	So, in this comparison we find that StringBuilder is about 5 000 times faster than String in append operations!
	It Is Faster to Use Implicit Concatenation than More Calls to Append
	Example 5-5: Implicit concatenation in the call to StringBuilder.Append.
	Example 5-6: Two calls to StringBuilder.Append.

	Debugging Is a Three-Pronged Choice
	Tracing in HTML
	There are seven categories of information output when using the Trace directive:
	Example 5-7: Trace directive added to ASP.NET Web Form, i.e. EPiServer Page Template.
	Figure 5-4: Effect of setting page attribute Trace to true.
	Switching on Tracing for the Whole Application

	Example 5-8: Trace directive added to web.config enables tracing for the whole application.

	Keeping the value for attribute ‘localOnly’ at ‘true’ means that only Web browsers started on the same computer that the Web ser...
	Figure 5-5: Viewing trace information for application Mimic.
	Adding Debug Code to Your Code

	All of C#’s debug functions are part of the System.Diagnostics name space meaning that they aren’t particular to C# but available in all .NET Framework compatible languages.
	System.Diagnostics.Debug

	The Assert function should be an old friend of C developers. It’s quite easy to understand and use. It has three overloaded versions, two of which are seen here:
	System.Diagnostics.Debug.Assert
	Example 5-9: Use of Assert method to test the IsNull property of variable prop.
	System.Diagnostics.Debug.Write and WriteLine; WriteIf and WriteLineIf

	Example 5-10: Using System.Diagnostics.Debug.Write and WriteLine in code.
	Debug Output Can Be Effortlessly Passed to a File

	Example 5-11: Adding a Debug output TraceListener.
	Conditional Compilation

	By convention, all Visual Studio .NET languages utilise two conditional compilation constants: Debug and Trace. Using conditiona...
	For C# the default Debug settings are that both Debug and Trace are defined and in the Release settings only Trace is defined. A...
	Example 5-12: Using conditional compilation constant Debug.
	The Conditional Attribute for Functions

	Example 5-13: Using the function attribute Conditional.

	The obvious benefit for developers is that we don’t have to litter our code with ‘#if (DEBUG)’ and ‘#endif’ around every funct...
	Debugging with Visual Studio .NET
	Example 5-14: Message from Visual Studio .NET when attaching to ASPNET_WP.Exe for debugging purposes.
	Debugging a Live EPiServer Application
	Figure 5-6: Attaching to a running process from the Visual Studio .NET debugger.

	Break Points
	Figure 5-7: A source code line with a break point set, on the left, and appearance when execution halts at the line, on the right.

	Break points have several advantages, but one of them is very appealing: you do not have to touch the source code to use them. W...
	Also, Visual Studio .NET remembers break point settings between sessions, so when you finally have the ideal set of static and d...
	There are two types of break points: static and dynamic break points.
	Static Break Points

	To set a break point, either click to the left of the line number (the line number display setting is located at Tool.Options.Te...
	Dynamic, Conditional, Break Points

	To add a condition to a break point, you can create a break point by clicking on a line of source code and then adding the condi...
	Example 5-15: Condition for break point to stop execution when CurrentPage.Link.ID equals 17.
	Example 5-16: Condition for break point to stop execution when CurrentPageLink equals “17”.

	It’s also possible to use Hit Count with dynamic break points, not the most useful in EPiServer context, but there when we need it.
	Single-Stepping in Code
	Step Into

	If you chose the profile ‘Visual Studio Developer’ the keyboard shortcut for Step Into i F11.
	Figure 5-8: After selecting Step Into from the break point at line 38, execution is currently inside the function CollectRegions.
	Step Over (Step/Execute Call)
	Figure 5-9: Effect of using Step Over twice after execution halted on line 38.

	Key F10 would be the keyboard shortcut for Step Over with profile ‘Visual Studio Developer’ chosen.
	Step Out (Finish up Here and Return to Caller)

	Recursive calls require a comment, as each call to Step Out only applies to the current call to the function. For every recursive call that has been executed you need to select Step Out once.
	The key combination Shift+F11 is the way to go with Step Out, provided your current profile is that of ‘Visual Studio Developer’.
	Move the Point of Execution

	You can only use this function when execution has been halted and you see the yellow execution pointer in the left margin of VS ...
	There’s at least one instance where this can be very useful: to make sure that every code path is executed. Naturally, the testi...
	Watch Expressions, QuickWatch and QuickestWatch
	QuickWatch
	Figure 5-10: QuickWatch window displaying information for a variable named regions.

	There are at least three ways to call upon QuickWatch: type Ctrl+Alt+Q, select a token and then select QuickWatch from the shortcut menu (right click) or open the Debug menu and then select QuickWatch.
	Notice that when the QuickWatch window is displayed, you can turn the QuickWatch into a regular watch by clicking on the button Add Watch.
	QuickestWatch
	Handling Exceptions
	Figure 5-11: Settings for handling, or not, exceptions in the VS.NET debugger.

	Even if you employ your own exception handling in code, which you should, these exception handling capabilities allow you more freedom during debugging.
	Call Stack
	Figure 5-12: Call Stack window.

	Command Window: Command Mode and Immediate Mode

	With the Command Window - Immediate Mode you may:
	To print the contents of a variable, you start the line with a question mark: ‘?Index’. Remember that the case-sensitivity of Im...
	The Immediate Mode of the Command Window is invoked by pressing Ctrl+Alt+I or by opening the Debug menu, choosing Window and finally choosing Immediate.
	Figure 5-13: Command Window in Immediate Mode.

	The variable regions is an array variable declared as System.Collections.ArrayList, but it only holds objects of type EPiServer....
	Example 5-17: Command line in Immediate Mode to display the contents of the ID property.
	Example 5-18: Command line in Immediate Mode to display the contents of CurrentPage["NewsCount"].

	Use the Logging Capabilities Introduced with EPiServer 4.3
	Logging is controlled from a configuration file named EPiServerlog.config and should be placed in the same folder as the applica...
	Statistics logging

	The statistics logging function in EPiServer is designed to support such behaviour. It should not usually be considered as a rep...

	Optimising Performance
	1. Don’t do it.
	2. [For experts only] Don’t do it yet.
	More Rules
	3. Never optimise until you’ve profiled.
	4. Changing algorithms can make your solution a lot faster than tweaking code.
	What Is Taking So Long?

	But seriously, you need to find the areas in your application which are using up the most time. This can be done in several ways...
	Figure 5-14 is from a session using NProf to profile the EPiServer example Web site.
	Figure 5-14: Results from an ASP.NET application profiling in NProf.
	Change Algorithms

	Using the Debug Switch for EPiServer Scheduler Service
	Example 5-19: Command line to start EPiServer Scheduler service with its debug switch.
	When the EPiServer Scheduler service is running in debug mode, it outputs a message at least once a minute. If you have several Web sites on the same computer, the output strings are colour coded so each Web site gets its own ‘output colour’.
	Example 5-20: Example output from EPiServer Scheduler service in debug mode.

	If you’ve been adding and deleting EPiServer Web sites, the sites data file for EPiServer.SchedulerSvc.exe, EPiServer.SchedulerS...
	Example 5-21: Example of SOAP-ENC:Array section listing Web sites in EPiServer.SchedulerService.Sites .xml.
	Example 5-22: Example of SOAP-ENC:Array section listing Web sites in EPiServer.SchedulerService.Sites .xml.
	Example 5-23: Example of an a3:SiteConnect section.
	6
	EPiServer Base Classes and Interfaces

	In this chapter we’ll take a closer look at these base classes and interfaces:

	The Ever-Present Web Page Tree
	This tree structure is realised in the EPiServer database table tblPage by using two attributes (columns): pkID and fkParentID. ...
	There’s a third attribute that’s important to the page tree. Its name is VisibleInMenu and its value controls whether or not the...

	PageBase, UserControlBase and PageData: When to Use What
	To access attributes on Web Pages, you use PageData irrespective of whether the current context is that of a Web Page or a User Control.

	EPiServer.PageBase
	Be aware that it is not at all unlikely for this to happen and the only clue to what’s going on is that nothing that’s been adde...
	PageBase is an abstract class (MustInherit in Visual Basic .NET), which is very advantageous when you’re dealing with objects si...
	EPiServer.PageBase itself inherits from System.Web.UI.Page, which has the core functionality for setting up and rendering a stan...
	PageBase also implements the interface IPageSource interface, which enables retrieval of other EPiServer pages.
	The most important part of the object model for PageBase looks like this:
	Figure 6-1: Object model for EPiServer.PageBase.

	The class tree for PageBase is quite shallow, but still covers most needs.
	Figure 6-2: Inheritance tree for class EPiServer.PageBase.
	Example 6-1: Declaration for class PageBase in Visual Basic .NET, C# and JScript .NET.
	Example 6-2: Cast using EPiServer.PageBase.
	Public Properties for EPiServer.PageBase
	Table 6-1: Public properties for EPiServer.PageBase.

	Public Methods for EPiServer.PageBase
	Table 6-2: Public methods for EPiServer.PageBase.

	More Information on Using the Public Properties and Methods in EPiServer.PageBase
	PageBase.Configuration
	Example 6-3: Using PageBase.Configuration and PageBase.CurrentPage.
	Example 6-4: Using Configuration to display information about the start page for the Web site.
	Example 6-5: Using Controls property.
	PageBase.Controls

	Example 6-6: Using System.Web.UI.ControlCollection.Controls to find all Region control objects on the current page (included with the Content Framework Definition File).
	PageBase.CurrentPage

	Example 6-7: Using PageBase.CurrentPage on a Page Template File, outside of any included controls.
	Example 6-8: Using CurrentPage.PageName on a Page Template File, inside ContentFramework and Content control.
	Example 6-9: Using PageBase.CurrentPage inside an EPiServer templated control.

	Remember that ‘<%= expression %>’ in the HTML part of an ASP.NET file is shorthand for ‘Response.Write(expression)’. In ASP.NE...
	Example 6-10: User PageBase.CurrentPage in conjunction with Container in a templated control.
	Example 6-11: Using PageBase.CurrentPage and PageBase.IsValue.
	PageBase.CurrentPageLink

	Example 6-12: Using CurrentPageLink to retrieve the PageData object.
	PageBase.CurrentUser
	Table 6-3: Some of UnifiedPrincipal’s properties and methods.

	Example 6-13: Using PageBase.CurrentUser in HTML.

	(See also example 3-14 on page 48.)
	PageBase.EPCharset, PageBase.EPLanguage and PageBase.EPLocale
	PageBase.AccessDenied
	Example 6-14: Using AccessDenied to deny access to a user not logged-on.
	PageBase.GetChildren

	Example 6-15: Using PageBase.GetChildren in a code-behind file for a Web Form.
	PageBase.GetPage

	Example 6-16: Using PageBase.GetPage and PageBase.CurrentPage to retrieve PageData information for the page specified in the attribute EventsContainer.
	Example 6-17: Using GetPage to retrieve the PageData object for the current page.
	PageBase.IsValue
	PageBase.QueryDistinctAccess

	Example 6-18: Using PageBase.QueryDistinctAccess.
	PageBase.RequiredAccess
	PageBase.Translate

	EPiServer.SimplePage
	Pages that inherit from SimplePage have all the other capabilities that TemplatePage descendants have, meaning you can still add...
	Example 6-19: Web Form which inherits from EPiServer.SimplePage.

	EPiServer.EditPage
	Public Properties
	Table 6-4: Public properties for EPiServer.EditPage.

	Public Methods
	Table 6-5: Public methods for EPiServer.EditPage.

	Protected Properties
	Table 6-6: Protected properties for EPiServer.EditPage.

	Protected Methods
	Table 6-7: Protected methods for EPiServer.EditPage.

	Example 6-20: Using EditPage.IsNewPage in Profile.ascx.cs.

	EPiServer.TemplatePage
	TemplatePage has but one public attribute which is not inherited:

	Creating an EPiServer Page Template File
	We’ll create an EPiServer Page Template File from scratch, but for now we’ll use the example Web site infrastructure.
	Open the Example Web Site Solution in Visual Studio .NET
	1. Open the EPiServer example Web site in Visual Studio .NET and then open the templates folder in Solution Explorer.
	2. Right-click on ‘templates’ and choose Add-Add New Item. Add a new Web Form, name it ‘PageTemplateFile.aspx’.
	3. Open PageTemplateFile.aspx.cs (select the file name in Solution Explorer and either click on the tool-bar button , type F7 or use the File menu).
	4. Change the inheritance for class PageTemplateFile so it inherits from EPiServer.TemplatePage instead of System.Web.UI.Page. N...

	Add a Framework File, Change Prefixes
	5. Switch to Design view by clicking on the toolbar button .
	6. Add a Framework by dragging the file DefaultFramework.ascx to the design window.
	7. Open the HTML window (still in Design mode) by clicking on the button labelled ‘HTML’ in the lower left corner of the Design window.
	8. Change TagPrefix for DefaultFramework from ‘uc1’ to ‘DefaultFramework’. Also change the tag to reflect this change:
	Example 6-21: Tag for DefaultFramework in Page Template File.

	EPiServer.SystemPage
	EPiServer.Util.LoginBase
	HandleFormsLogin Method
	Example 6-22: Using HandleFormsLogin.
	Table 6-8: Parameters for method EPiServer.Util.LoginBase.HandleFormsLogin.

	EPiServer.UserControlBase
	Figure 6-3: Object model for EPiServer.UserControlBase.
	Table 6-9: UserControlBase’s own public attributes.
	Table 6-10: UserControlBase’s own public methods.
	More Information on Using the Public Properties and Methods in UserControlBase
	UserControlBase.PageBase
	Example 6-23: Using PageBase.CurrentLink (part of a function in the code-behind file for a User Control).
	Example 6-24: Using PageBase.CurrentUser (part of the code-behind file for a Web User Control).

	EPiServer.Core.PageData
	You will notice that the PageData object is in many respects synonymous with the Web Page it’s holding properties for. One example of this is the Changed property which holds last change date and time for the PageData object, i.e. the Web Page.
	Figure 6-4: Object model for EPiServer.PageData.
	Table 6-11: Public properties for EPiServer.Core.PageData.
	Table 6-12: Public methods for EPiServer.Core.PageData.
	More Information on Using the Public Properties and Methods in EPiServer.Core.PageData
	EPiServer.Core.PageData.ACL

	The Access Control List is comprised of an Access Control Entry, ACE, array and is accessed by calling the method ACL.ToRawACEAr...
	Table 6-13: Public fields for EPiServer.Core.PageData.ACL.
	Table 6-14: Public properties for EPiServer.Core.PageData.ACL.
	Public Methods
	Table 6-15: Public methods for EPiServer.Core.PageData.ACL.

	Example 6-25: Using ACL.ToRawACEArray to enumerate the Access Control Entries.
	Example 6-26: Using ACL.QueryDistinctAccess to check specific access for the current user.
	Example 6-27: Using ACL.QueryDistinctAccess with CurrentUser.Sid.
	Example 6-28: Using ACL.QueryDistinctAccess with CurrentUser.SidList.
	Example 6-29: Using EPiServer.Security.AccessControlList.AnonymousSidList.
	EPiServer.Core.PageData.Changed

	Example 6-30: Using PageData.Changed.
	EPiServer.Core.PageData.ChangedBy

	Example 6-31: Using PageData.ChangedBy.
	EPiServer.Core.PageData.Created, Saved and Changed

	PageData.Saved is the sibling of Created. It contains the date/time of last save operation.
	Both Created and Saved are maintained by the EPiServer infrastructure - you have no control over them. The Changed, on the other hand, is only updated when a page is changed and CurrentPage.Property["PageChangedOnPublish"] .Value is True.
	EPiServer.Core.PageData.CreatedBy
	EPiServer.Core.PageData.Indent
	Example 6-32: Using PageData.Indent with EPiServer.WebControl.Clear.
	EPiServer.Core.PageData.Item and EPiServer.Core.PageData.Property

	Example 6-33: Using the indexer PageData.Item and PageData.Property.

	The easiest way to access properties in HTML is to use the EPiServer Web Custom Control Property (EPiServer.WebControls.Property). Read more about Property on page 191 and following pages.
	EPiServer.Core.PageData.LinkURL

	Usage of LinkURL can be seen in example 6-3 on page 129).
	EPiServer.Core.PageData.PageLink
	Example 6-34: Using PageData.PageLink in HTML.
	EPiServer.Core.PageData.PageName

	Having realised this, PageName can be used to great benefit in many cases, such as in templated controls.
	Example 6-35: Using PageData.Item, PageData.LinkURL and PageData.PageName.
	EPiServer.Core.PageData.PageTypeID
	EPiServer.Core.PageData.PageTypeName
	EPiServer.Core.PageData.ParentLink

	Example 6-36: Using PageData.ParentLink and PageBase.GetChildren.
	Example 6-37: Using PageData.ParentLink.
	EPiServer.Core.PageData.StartPublish and EPiServer.Core.PageData.StopPublish
	Figure 6-5: StartPublish and StopPublish are controlled from EPiServer Edit mode.

	EPiServer.Core.PageData.VisibleInMenu

	Example 6-38: Using PageData.VisibleInMenu.
	EPiServer.Core.PageData.QueryAccess

	EPiServer.Core.IPageSource
	The IPageSource interface is implemented by many classes - such as EPiServer.PageBase (and its descendants), EPiServer.DataFacto...
	IPageSource was created as an interface due to the fact that the GetPage and GetChildren methods normally have the same implemen...
	Table 6-16: Public properties for EPiServer.IPageSource.
	Table 6-17: Public methods for EPiServer.IPageSource.
	More Information on Using the Public Properties and Methods in EPiServer.IPageSource

	EPiServer.Global
	As the Global class is globally available, you can use it by just referring to it like this:
	Example 6-39: Using EPiServer.Global.
	Table 6-18: Public Properties

	The Static Properties BaseDirectory, EPConfig, EPDataFactory, EPLang and InstanceName
	EPiServer.Global.EPConfig
	Example 6-40: Using EPConfig to display information about the start page for the Web site.
	EPiServer.Global.EPDataFactory
	EPiServer.Global.EPLang

	Example 6-41: Using EPLang.Translate in a Web User Control (the ascx file).
	Example 6-42: Using EPLang.Translate in JavaScript.

	Notice that if the key does not begin with a ‘/’ or ‘#’, the key itself is simply returned as the result. The reason for this be...
	The second form of Translate takes two string arguments, the first again being a key used in the same manner as earlier, and the second argument being a language identifier.
	Example 6-43: Using EPLang.Translate in code.

	EPiServer.ApplicationConfiguration
	If you add your own values to the <appSettings> section in web.config, you can read those through the Item property (the indexer).
	You can also get the configuration settings from the global object EPConfig, defined as a static member (Shared in VB.NET) in the Global class.
	When you make any changes to the configuration settings, remember to call Persist to save the changes.
	Almost all of the settings are available through the Item method / indexer. Some of the common settings are also exposed with typed properties.
	The interfaces support generic objects. However, the internal implementation only supports data types string, integer and boolea...
	Adding Your Own Settings

	The configuration object names have the syntax ‘EPxNomen’, where ‘EP’ is a required string literal, the ‘x’ is one of ‘f’, ‘n’ o...
	Table 6-19: Prefixes used for settings in the appSettings section of web.config file.
	Example 6-44: Testing the prefix scheme in web.config.
	Example 6-45: Output from HTML code in example 6-44.
	Use EPiServer.ConfigFileSettings to Create New Settings

	Example 6-46: Adding the setting EPnImportantValue to the web.config file.
	Settings May Be Encrypted

	Example 6-47: Adding the setting EPsInnocuousValue to the web.config file.
	Public Properties and Methods for EPiServer.ApplicationConfiguration
	Table 6-20: Public properties for EPiServer.ApplicationConfiguration.
	Table 6-21: Public methods for EPiServer.ApplicationConfiguration.

	More Information on Using the Public Properties and Methods in ApplicationConfiguration
	EPiServer.ApplicationConfiguration.Authentication
	Example 6-48: Using read-only attribute EPiServer.Global.EPConfig.Authentication.

	Since the code from example 6-48 was taken from a Web User Control inheriting from EPiServer.UserControlBase, it could as well have been written like this:
	Example 6-49: Using read-only attribute UserControlBase.Configuration.Authentication.
	EPiServer.ApplicationConfiguration.ConfigFile

	ConfigFile has a type of EPiServer.ConfigFileSettings, which in turn has a few attributes and methods itself. One of these attri...
	Example 6-50: Displaying the name of all settings in the appSettings section-code-behind file.
	Example 6-51: Displaying the name of all settings in the appSettings section-HTML part.
	EPiServer.ApplicationConfiguration.HostUrl

	Example 6-52: Using EPiServer.Global.EPConfig instead of Configuration in the same code as 6-3.
	Example 6-53: Using Configuration instead of EPiServer.Global.EPConfig in the same code as 6-15.
	EPiServer.ApplicationConfiguration.RootDir

	Example 6-54: Using RootDir to specify location of style sheet.
	Example 6-55: Using RootDir to specify location of image.
	Example 6-56: Using RootDir to specify location of image.
	EPiServer.ApplicationConfiguration.RootPage and StartPage
	Figure 6-6: RootPage and StartPage for the example Web site Web Page Tree.

	EPiServer.ApplicationConfiguration.Exists

	Example 6-57: Using EPiServer.EPConfig.Exists before reading a setting in web.config.
	EPiServer.ApplicationConfiguration.InitSmtpServer
	EPiServer.ApplicationConfiguration.IsEncrypted

	7
	EPiServer Web Controls

	It’s a safe bet to state that there is a definite pattern to the control types found in the name space EPiServer.WebControls. Ve...
	Table 7-1: EPiServer ASP.NET Web Custom Controls

	Inheritance Tree for EPiServer.WebControls
	Figure 7-1: Inheritance Tree for EPiServer.WebControls name space, first three levels shown for all, more for UserControlBase and ContentFramework.

	ASP.NET Templated Controls
	For example, the built-in DataList server control (System.Web.UI.WebControls.DataList) defines these template names:
	Example 7-1: Using templated control DataList.
	Templated Controls Have an Imaginary Foreach Statement

	Example 7-2: Pseudo code for templated control with an imaginary foreach statement.
	The Container Property
	EPiServer Templated Controls

	An example of how to use this control in a Web Form or a User Control might look like this:
	Example 7-3: Using EPiServer templated control NewsList.
	Figure 7-2: Actual news items presented using the templated control NewsList.

	In the resulting HTML code, this news list will be distinguished by the first news item being the only one which is displayed.
	The Container Property in EPiServer Templated Controls

	EPiServer.WebControls.Clear
	Example 7-4: Clear control object using in HTML.
	Example 7-5: HTML IMG tag equivalent to Clear control object.
	If you don’t specify either or both of Height or Width, they will assume their default values of ‘1’.
	Example 7-6: Clear control object using in HTML.

	As can be seen in figure 7-1, Clear is a direct descendant of System.Web.UI .Control; it only adds the Height and Width attributes.
	The Visible attribute can be used to decide whether or not to actually render an image.
	Example 7-7: Using HasChildren attribute to control attribute Clear.Visible.

	EPiServer.WebControls.Content
	Two of the attributes in the Content class are important:
	Table 7-2: The two important attributes in EPiServer.WebControls.Content.
	Example 7-8: Using Content control in a Page Template File.

	Even if you’re working with nested Region controls, there’s no need to nest the Content controls, as they will replace the proper Region control contents anyway.
	Remember, in the C# world many strings are case-sensitive. To improve portability always treat them as such, no matter which programming language you are using.

	EPiServer.WebControls.ContentFramework
	Example 7-9: Code-behind file from a Framework Definition File.

	EPiServer.WebControls.ContentFrameworkSelector
	In the example Web site, the Page Template File Calendar.aspx uses ContentFrameworkSelector to render either of two Web User Controls: Calendar.ascx or PortalCalendar.ascx.
	Example 7-10: ContentFrameworkSelector in Calendar.aspx.

	EPiServer.WebControls.ExplorerTree
	ExplorerTree is a direct descendant of EPiServer.WebControls.PageTreeData (see figure 7-1).
	Figure 7-3 below shows the visual appearance of ExplorerTree. (You should recognise the Web Page Tree from the example Web site; it’s the tree shown in the left pane of Edit mode.)
	Figure 7-3: Using ExplorerTree in EPiServer Edit mode.
	Example 7-11: ExplorerTree in the code-behind file.
	Example 7-12: HTML code needed for ExplorerTree.
	Figure 7-4: Using ExplorerTree control on a Web page.
	Table 7-3: ExplorerTree attributes.

	EPiServer.WebControls.MenuList
	In the User Control TopMenu that ships with EPiServer, MenuList is used to create a horizontal top-level menu.
	TopMenu.ascx itself is used in the Framework Definition File DefaultFramework outside of any Regions, meaning that all Page Template Files that use DefaultFramework get TopMenu.ascx.
	Figure 7-5: Result of using TopMenu.ascx in the example Web site.
	Example 7-13: TopMenu.ascx.
	Example 7-14: TopMenu.ascx.

	EPiServer.WebControls.NewsList
	Again looking at the Mimic Web site, we see that a NewsList control object is used on the start page.
	Figure 7-6: Using NewsList on Mimic’s start page.
	Example 7-15: HTML code to render NewsList control (from the Mimic start page).

	EPiServer.WebControls.PageList
	Figure 7-7: Example of PageList on Web page.
	Example 7-16: EPiServer.WebControls.PageList used on a Web Form.
	The PageLink property of PageList is used to link the control object to the proper place in the Web Page Tree. To link it to the current page, and its child pages, you would use ‘PageLink=<%# CurrentPage.PageLink %>’ instead.

	EPiServer.WebControls.PageSearch
	Figure 7-8: Using PageSearch on a Web Form Search.aspx.
	This is what it looks like when searching the Mimic Web site for the word ‘mimic’.
	Figure 7-9: Result presented when searching the Mimic Web site for the word ‘mimic’.

	All the action takes place in the Web User Control, Search.ascx, and its code- behind file, Search.ascx.cs.
	Example 7-17: Using EPiServer.WebControls.PageList in Web User Control Search.ascx.
	Table 7-4: PageList attributes.

	EPiServer.WebControls.PageTree
	PageTree is often used in conjunction with EPiServer.MenuList, where it uses the MenuList as its data source to create hierarchical menus.
	One example of using PageTree, and Menu, is the DefaultFramework file shipped with EPiServer. The menu displayed along the left ...
	This is what the final result looks like:
	Figure 7-10: Menu created by Web Control Menu.ascx using Custom Controls PageTree and MenuList. The right-hand picture is the result of expanding the item News.
	Example 7-18: Menu.ascx.cs
	Example 7-19: Menu.ascx.
	Example 7-20: Menu.ascx in much simplified form.
	Figure 7-11: Menu created by the simplified Web Control Menu.ascx using Custom Controls PageTree and MenuList. The right-hand picture is the result of expanding the item News.

	The original Menu.ascx (see example 7-19) uses four out of PageTree’s ten templates: HeaderTemplate, to create a header for the ...
	There are several examples of elegant coding in example 7-19. One is the use of EPiServer.WebControls.Property instead of the HTML anchor tag.
	Example 7-21: Using EPiServer.WebControls.Property instead of HTML anchor tag.

	EPiServer.WebControls.Property
	Table 7-5: Attributes for EPiServer.WebControls.Property.
	Properties on pages are collected in an EPiServer.Core.PropertyDataCollection collection called Property, provided that the template used implements IPageSource (see page 153).
	Property objects used in HTML only have to include the name of the Property:
	Example 7-22: Using a Property object to display contents of Property MainBodyHeading.
	Example 7-23: Display the name of the page.

	If you put a Property control inside a templated control like the PageList control which implements IPageSource, the Property co...
	Example 7-24: Using Property inside a templated control.
	Example 7-25: Using Container inside a templated control.
	Example 7-26: Switching off DOPE support for an EPiServer Property.

	EPiServer.WebControls.PropertyCriteriaControl
	Example 7-27: Using PropertySearch, PropertyCriteriaControl and PageList to produce a list of pages meeting certain criteria.

	EPiServer.WebControls.PropertySearch
	Central to PropertySearch is its attribute Criterias (this is the only attribute which is not inherited). Criterias is of the ty...
	EPiServer.PropertyCriteria
	Table 7-6: PropertyCriteria attributes.

	Using PropertySearch
	Example 7-28: Using PropertyCriteria when searching for Web Pages by their name (from templates\Units\AlphanumericListing.ascx.cs).

	Taking a look at the function AddLetter, we see that it’s building up for a string search; criterion.StringCondition is given a ...
	In this particular instance, you can also see that AddLetter is called multiple times. As criterion.Required is not altered, thi...
	The HTML code in AlphanumericListing.ascx is quite simple.
	Example 7-29: AlphanumericListing.ascx.

	EPiServer.WebControls.Region
	As such, Region objects are never instantiated in code-behind files, they simply have no purpose there.
	Example 7-30: Use of EPiServer.WebControls.Region in a Framework Definition File.
	Example 7-31: Nested Region control objects.

	EPiServer.WebControls.SiteMap
	SiteMap is used in just two ASP.NET objects in the example Web site: the Page Template File SiteMap.aspx and the Web User Control SiteMap.ascx (in the template\Units folder).
	The Page Template File SiteMap.aspx is not very exciting; its code-behind file is all but empty. The HTML contents look like this:
	Example 7-32: HTML contents of Page Template File SiteMap.aspx.

	EPiServer.WebControls.Translate
	Translate is a direct descendant of System.Web.UI.WebControls.WebControl (see figure 7-1).
	There are only three attributes that Translate implements itself:
	Table 7-7: Attributes implemented by EPiServer.Translate.

	The control uses the LanguageManager to translate the text. You can access the LanguageManager through code using the Global.EPLang static property.
	Example 7-33: Using EPiServer.Translate in HTML part of a form or control.
	Translating ASP Intrinsic controls
	Example 7-34: Using Translate attribute in an ASP.NET control.
	8
	Custom Property Data Types and Filters

	Customized Property Data Types (Customized Value Types)
	The customized properties are viewable in three modes:
	Table 8-1: Standard property data types.
	Class EPiServer.PlugIn.PageDefinitionTypePlugIn
	Creating New Property Data Type BackgroundColourType

	The new customized property BackgroundColorType will inherit from PropertyString and include a new implementation of CreateChildControls, overriding the implementation in the base class.
	1. Open your project in Visual Studio .NET, add a new class file (Add Class) and call it BackgroundColourType.cs
	2. Add code according to the listing below:
	Example 8-1: Code for class BackgroundColourType class inheriting from PropertyString.

	The rationale for extending PropertyString, as opposed to another intrinsic property class, is that colours in HTML are often encoded as six hex numbers and in string format.
	In this particular example, two new over-ridden function CreateChildControls are all that’s needed. The first argument, string, for CreateChildControls, RenderType, contains the current view mode according to this list:
	Make the New Property Type Part of the System
	Table 8-2: Information when creating new property type.

	In Edit mode, EPiServer takes care of positioning the property on the page.
	Figure 8-1: Handling a property of the type BackgroundColourType in EPiServer Edit mode.
	Creating New Restricted Property Data Type MailToUrl
	Example 8-2: Code for class MailToUrl class inheriting EPiServer.Core.PropertyString.

	In order to be able to perform the tests, we introduce a new control, CustVal, of the type System.Web.UI.WebControls.ServerValidateEventHandler. This is linked to the function MailToUrlValidator.
	Example 8-3: CustomValidatorControl CustVal introduced (compare example 8-2).
	Figure 8-2: An error ‘created’ in custom validator is signalled in EPiServer Edit mode.

	Custom Filters
	Filters perform three major tasks. They help in:
	Figure 8-3: The role of Custom Filters. On the left a templated control fed from the Page database, and on the right a Custom Filter is used to select the data.

	To fully appreciate filters, let’s approach them in a roundabout manner. We will start by looking at a templated control which does not utilise any filtering, as in example 8-4.
	Example 8-4: MenuList (EPiServer.WebControls.MenuList) using Start page as a starting point of a listing.

	Let’s break up the bond between the sender and receiver to insert a Filter. As a Filter is created in a .NET language, we can do anything we like in the Filter code.
	Creating the Custom Filter Class
	Example 8-5: Custom Filter Class CustomFilterOnlyMothers.

	Please also notice that there’s no change to the HTML part of the Web Form/ Web User Control, it’s all happening in the code-behind file.
	Connecting the Custom Filter to the Control

	The Filter event is always triggered before data is displayed in a control giving us the opportunity to insert our Custom Filter when this event is hooked.
	To perform the connection between Custom Filter and control object we add one line of code to the OnInit function in the source-behind file of the Web Form or Web User Control onto which the templated control has been added.
	Example 8-6: Code connecting the Custom Filter CustomFilterOnlyMothers to the PageList control CustomFilterPageList.
	The Results of Using the Custom Filter
	Figure 8-4: Before and after using the Custom Filter. On the left the templated control without the Filter and on the right the results after applying the Custom Filter.

	More Information on the EPiServer Web Site
	9
	Data Modelling

	EPiServer.DataFactory and EPiServer.Global.EPDataFactory
	Take a look at figure 1-6 on page 10. If we blow up the little box labelled ‘EPiServer DLLs’ and its connection to the database ...
	Figure 9-1: EPiServer.DataFactory object EPiServer.Global.EPDataFactory.
	EPiServer.Global.EPDataFactory May Be Used in Non-Content Framework Web Forms
	Example 9-1: Using EPDataFactory in non-Content Framework Web Form Mobile.aspx.

	It also implements IPageSource.CurrentPage. It is not shown in the example for space reasons. Mobile.aspx cannot rely on EPDataFactory for its CurrentPage implementation - EPDataFactory.CurrentPage always returns null.
	Public Properties, Methods and Events for EPiServer.DataFactory
	Table 9-1: Public properties for EPiServer.DataFactory.
	Table 9-2: Public methods for EPiServer.DataFactory.
	Table 9-3: Public events for EPiServer.DataFactory.

	More Information on Using the Properties, Methods and Events in EPiServer.DataFactory
	EPiServer.DataFactory.DynPropTree
	Page Cache Statistics Related Properties
	Example 9-2: Statistics example, from the SDK help file (EPiServer4SDK.chm).
	EPiServer.DataFactory.Delete

	Example 9-3: Using DataFactory.Delete in an EPiServer Web User Control to delete the current page.
	EPiServer.DataFactory.DeleteChildren
	EPiServer.DataFactory.FindPagesWithCriteria

	Example 9-4: Using FindPagesWithCriteria to find pages that were published during the last seven days.
	EPiServer.DataFactory.GetChildren and GetPage
	EPiServer.DataFactory.GetDefaultPageData

	One such example is to provide a discussion forum. EPiServer ships with a template and Web User Control to provide this exact feature. If you open the example Web site and click on Templates in the top menu you’ll see what it looks like.
	Figure 9-2: Discussion forum template which ships with EPiServer.
	Figure 9-3: New discussion forum posting template.
	Example 9-5: Function SavePage which saves newly created discussion forum postings.

	Lastly, the new page is saved and published and the viewer’s Web browser redirected to this new page.
	EPiServer.DataFactory.Save
	Example 9-6: Using EPiServer.DataFactory.Save.
	EPiServer.DataFactory Events
	EPiServer.DataFactory.CreatingPage

	The code in example 9-7 hooks the CreatingPage event to make sure that if there is a property/value called ‘WriterName’, it gets some content which links it back to the logged-on user.
	Example 9-7: Using CreatingPage.
	EPiServer.DataFactory.PublishedPage
	EPiServer.DataFactory.SavingPage

	Example 9-8: Using EPiServer.EPDataFactory.SavingPage in Global.asax.cs.

	Depending on your needs, it is easy to adapt the code to other scenarios, e.g. if you have a large number of LongString attribut...
	Example 9-9: Using EPiServer.EPDataFactory.SavingPage in Global.asax.cs to convert MainBody.

	XML Web Services and EPiServer
	There are several possibilities involving EPiServer and Web Services.
	Figure 9-4: EPServer.Global.EPDataFactory is exposed as a Web Service.
	Consuming Data from an EPiServer Web Site - Web Services Client
	Preparations
	Create a Windows Application Web Services Client

	The client will retrieve the Web pages when a Button is clicked. Information on returned pages will be presented in a ListBox.
	1. Create a new Windows Application project in Visual Studio .NET. You might want to name it ‘WSFindRecentPages’.
	2. Name the class ‘FindRecentPages’ and form file ‘FindRecentPages.cs’.
	3. Add a Web Reference to References (Solution Explorer). The URL to the Web server will look like this http://server/WebServices/DataFactoryService.asmx. You should see a page much like figure 9-5.
	Figure 9-5: Page returned when logging on to the page http://.../WebServices/DataFactoryService.asmx.

	4. Add a Button and a ListBox to the Form.
	5. Everything that’s supposed to happen will take place in the Click event for the Button. Click on the Button in Design mode and add this code.
	Example 9-10: Code to retrieve Web pages from EPiServer via its Web Services interface.
	6. Compile, build, run and then click on the Button. Provided some pages have actually been made during the last seven days, the ListBox should look a bit like this.
	Figure 9-6: Example of results using Web Services to retrieve page information from EPiServer.

	Moving along, we skip the credentials bit - nothing special here. Next stop is the PropertyCriteria class. This is also of the W...
	As you can see in the code in example 9-10, we enumerate the RawProperty objects found in the RawPage.Property collection. Doing...
	Table 9-4: RawProperty.Name returned to Web Services client.

	Import and Export
	Export and Import Functions in the EPiServer Admin Mode
	Figure 9-7: EPiServer Admin mode menu, Tools section (incomplete).

	The reason to include the Export/Import data function in the Admin mode of EPiServer was to facilitate moving a complete EPiServ...
	Export and Import Classes in EPiServer.Enterprise

	We have tried our utmost to make these classes as robust as possible and as graceful as possible when failing. An important task...
	The classes are able to handle such non-trivial tasks as what to do when importing page objects which have properties categorised in specific ways into an EPiServer system which doesn’t have the same category definitions.
	An example of this particular problem is the import of a page utilising properties in the categories ‘News’ and ‘Technical’ into...
	The same kind of gracefulness applies to other data types, i.e. always warn, never break execution as long as the problem can be managed.
	EPiServer.Enterprise
	ExportImportBase
	Public Properties
	Table 9-5: Public properties for EPiServer.Enterprise.ExportImportBase.

	Public Methods
	Table 9-6: Public methods for EPiServer.Enterprise.ExportImportBase.

	DataExporter
	Public Methods
	Table 9-7: Public Methods for EPiServer.Enterprise.DataExporter.

	DataImporter
	Public Methods
	Table 9-8: Public Methods for EPiServer.Enterprise.DataImporter.

	Example Code for Using the EPiServer.Enterprise Classes
	Exporting a Page Type
	Example 9-11: Exporting a single Page Type using EPiServer.Enterprise.DataExporter.
	Importing a Page Type

	Example 9-12: Importing a single Page Type using EPiServer.Enterprise.DataImporter.
	Handling Warnings and Errors

	Synchronizing Pages Between EPiServer Web Sites

	The synchronization is wholly under developer control, meaning you decide what to synchronize and you’re also responsible for maintaining the look-up table used for synchronization.
	Property AllowPageSync is the Focal Point
	PageLookup Provides Focusing

	PageLookup holds pairs of source and destination identification strings, in effect providing a translation table between the pag...
	Simple and Manageable Page Synchronisation Example

	We have left a lot of otherwise necessary coding out of this example. For one thing, there is currently nothing to trigger the i...
	On the Exporting Web Site

	On the exporting Web site, we hook the EPiServer.DataFactory.PublishedPage event, so each time a page is published our code will be automatically run.
	The facility to copy, or move, the files from the exporting server to the importing is simply to copy the output files to a server share on the importing server.
	Example 9-13: Code on the exporting side to synchronize pages between Web sites.
	On the Importing Web Site

	The page file proper is processed in the function ImportEPi4.
	Example 9-14: Code on the importing side to synchronize pages between Web sites.
	10
	Personalization

	As part of the personalization capabilities, custom properties for every user and for every page can be stored opening up a weal...

	Contents of the EPiServer.Personalization Name Space
	Table 10-1: Classes in the EPiServer.Personalization name space.
	Table 10-2: Interfaces in the EPiServer.Personalization name space.
	Table 10-3: Enumerations in the EPiServer.Personalization name space.

	Class PersonalizedData (EPiServer.Personalization.PersonalizedData)
	Table 10-4: Public properties for EPiServer.Personalization.PersonalizedData.
	Table 10-5: Public methods for EPiServer.Personalization.PersonalizedData.
	Item, or Storing Other Personalized Settings
	Example 10-1: Accessing a custom personal property (from EPiServer4SDK.chm).
	Example 10-2: Accessing a custom personal property linked to the current page (from EPiServer4SDK.chm).

	Database Storage

	Using the EPiServer.Personalization Name Space
	Accessing Information for the Currently Logged-On User
	Table 10-6: Ways to access information for the currently logged-on user.

	The obvious shortcut to using any of the properties in table 10-6 is the static property PersonalizedData.Current, which returns a PersonalizedData object for the currently logged-on user.
	PersonalizedData.GetProperties
	Example 10-3: Enumerating all properties for the currently logged-on user.
	Example 10-4: Enumerating all properties for the current page for the currently logged-on user.

	PersonalizedData.Load
	Example 10-5: Using EPiServer.Personalization.PersonalizedData.Load (from Profile.ascx.cs).
	Example 10-6: Loading PersonalizedData for the currently logged-on user.

	Using Subscription (EPiServer.Personalization.Subscription)
	Example 10-7: Code from the code-behind file of Web Form NewsGroupList.aspx.

	To begin with, the code checks whether there are any UserData available for the CurrentUser. If this property is null, the Panel...
	Last of the personal matters is to find out whether the current user has Create permission to the current page. If the use does have Create permission, she will be allowed to create new news group items (which are pages).
	Figure 10-1: News group Windows (from the example Web site) as it appears to an anonymous user.
	Figure 10-2: News group Windows (from the example Web site) as it appears to a logged-on user.
	11
	Job Scheduling

	Scheduled Jobs - Have the Computer Work for You
	Figure 11-1: Scheduled jobs interaction between EPiServer and EPiServer Scheduler.
	Figure 11-2: Scheduled jobs section, EPiServer Admin mode.
	One other perhaps obvious thing sets EPiServer Scheduler apart from the rest of EPiServer. This is that its actions never influence EPiServer Web sites - it doesn’t interact with the Web server service, although it may use ASP.NET classes and objects.

	Jobs Have Access to the Full Infrastructure
	EPiServer Demands on the Scheduled Job Class
	EPiServer has but two demands on scheduled jobs classes you create yourself.
	Attribute EPiServer.PlugIn.ScheduledPlugIn
	Table 11-1: Public Properties for EPiServer.PlugIn.ScheduledPlugIn class.

	Execute Method

	A Trivial Scheduled Job
	1. First create a new class in the EPiServer project, call it TellTime.
	2. Check that the name space is the expected, without changes made it should be ‘development’.
	Example 11-1: ScheduledPlugIn attribute added to class TellTime.
	3. Add the EPiServer.PlugIn.ScheduledPlugIn to the class. Set its DisplayName attribute to something helpful. This text will be visible in EPiServer Admin mode.

	Example 11-2: ScheduledPlugIn attribute added to class TellTime.
	4. Create a public parameter-less string method by the name of ‘Execute’. Code it to return the current time.

	Example 11-3: Public parameter-less string method Execute returning the current time.
	5. Done. Your class should now be very similar to this:

	Example 11-4: Complete TellTime class.
	6. Compile the solution and either start debugging or simply open the EPiServer Admin mode in your Web browser.
	7. Verify that there’s a new scheduled job called ‘Tells time of invocation’.
	8. Click on this job name in the left pane.
	9. Click on the button ‘Start manually’ in the right pane.
	10. Activate the History tab - you should see a new record looking similar to this (probably not the same date and time, though):
	Figure 11-3: Result of running scheduled job ‘Tells time of invocation’.

	Elementary Troubleshooting of Scheduled Jobs
	Figure 11-4: Error message from EPiServer Admin mode trying to run faulty scheduled job.
	Debug Scheduled Jobs just like any other EPiServer Component
	If you need more advanced debugging, please refer to chapter 5, Avoiding Errors, Testing and Debugging, starting on page 95. There’s a section concerning the EPiServer Scheduler service starting on page 121 in the same chapter.
	Figure 11-5: Scheduled job ‘Tells time of invocation’ being debugged.
	Develop a Cautious Mentality

	Scheduled Job to List All Pages Created Last Week
	There are a multitude of options as far the report proper is concerned. We’ve settled on sending the list in an e-mail to a name...
	The Code
	Example 11-5: Code to implement a custom scheduled job.

	The Comments
	The Pseudo Code
	Example 11-6: Class NewlyCreatedPages written in pseudo code.
	Search Criterion
	Performing the Search

	As the start page for the search, we use EPiServer.Global.EPConfig.RootPage, as we want every page to be tested and not just tho...
	There’s more information on using FindPagesWithCriteria, together with EPiServer.Property and PropertyCriteriaCollection, on page 216.
	Enumerating the Pages Found
	Calling SendMail from Execute
	Finally, in Execute
	Function SendMail
	Web.config Is Used to Store Configuration Data
	Discover the New Job in EPiServer Admin Mode

	As you open EPiServer Admin mode, you’ll notice the new scheduled job in the left pane. Well, it not actually scheduled yet, that’s what we’re about to do.
	Figure 11-6: EPiServer Admin mode, new custom scheduled job visible.
	Set Up the New Job
	Figure 11-7: Settings for scheduled job ‘Mail list of newly created pages’.
	Figure 11-8: First report from new job ‘Mail list of newly created pages’.

	Removing an Obsolete Scheduled Job
	If you change the class or name space name, the old scheduled job will still be active but without a settings page. You should manually delete this job from the database, in table tblScheduledItem.
	12
	File and Folder Objects

	File and Folder Handling in EPiServer 4.3 and Later
	A major new feature is that all files (actually folders) can be protected using EPiServer access permission security. To be able...
	From the Editor perspective, we added a powerful new File Manager which is integrated with the new file system. Open the FileMan...

	EPiServer.FileSystem
	Important Note on Path Strings
	Classes
	Table 12-1: EPiServer.FileSystem classes.

	Delegates
	Table 12-2: EPiServer.FileSystem delegates.

	EPiServer.FileSystem.UnifiedDirectory
	Table 12-3: Public Properties for EPiServer.FileSystem.UnifiedDirectory.

	Public Methods
	Table 12-4: Public methods for EPiServer.FileSystem.UnifiedDirectory.
	EPiServer.FileSystem.UnifiedFile
	Public Properties
	Table 12-5: Public properties for EPiServer.FileSystem.UnifiedFile.

	Public Methods
	Table 12-6: Public methods for EPiServer.FileSystem.Unified File.

	EPiServer.FileSystem.UnifiedFileSummary
	Public Properties
	Table 12-7: Public properties for EPiServer.FileSystem.UnifiedFileSummary.
	Table 12-8: Public methods for EPiServer.FileSystem.UnifiedFileSummary.

	EPiServer.FileSystem.UnifiedFileSystem
	Public Properties
	Table 12-9: Public properties for EPiServer.FileSystem.UnifiedFileSystem.

	Public Methods
	Table 12-10: Public methods for EPiServer.FileSystem.UnifiedFileSystem.

	Public Events
	Table 12-11: Public events for EPiServer.FileSystem.UnifiedFileSystem.

	EPiServer.FileSystem.UnifiedFileSystemConfiguration
	Public Properties
	Table 12-12: Public properties for EPiServer.FileSystem.UnifiedFileSystemConfiguration.
	Public Methods
	Table 12-13: Public Methods for EPiServer.FileSystem.UnifiedFileSystemConfiguration.

	EPiServer.FileSystem.UnifiedSearchHit
	Public Properties
	Table 12-14: Public properties for EPiServer.FileSystem.UnifiedSearchHit.

	EPiServer.FileSystem.UnifiedSearchHitCollection
	Public Properties
	Table 12-15: Public properties for EPiServer.FileSystem.UnifiedSearchHitCollection.

	Public Methods
	Table 12-16: Public methods for EPiServer.FileSystem.UnifiedSearchHitCollection.

	EPiServer.FileSystem.UnifiedSearchQuery
	Public Properties
	Table 12-17: Public properties for EPiServer.FileSystem.UnifiedSearchQuery.

	Public Methods
	Table 12-18: Public methods for EPiServer.FileSystem.UnifiedSearchQuery.

	EPiServer.FileSystem.WebDownloadManager
	Public Methods
	Table 12-19: Public methods for EPiServer.FileSystem.WebDownloadManager.

	EPiServer.FileSystem.FileSystemEventHandler
	Table 12-20: Arguments passed to the event function (EPiServer.FileSystem .FileSystemEventHandler).

	EPiServer Web Custom Controls that Utilise the EPiServer.FileSystem Classes
	Table 12-21: Classes in EPiServer.WebControls which use EPiServer.FileSystem functionality.

	Use of EPiServer.FileSystem in EPiServer 4.3 (and Later)
	File Management Tool in EPiServer Admin Mode
	File Management Tool in EPiServer Admin Mode
	Figure 12-1: File management tool in Tools section of Admin mode menu (EPiServer 4.3 and later).

	File Management Tool on Action Window in EPiServer Edit Mode
	Functionality in the File Management Tool

	Using EPiServer.FileSystem
	UnifiedFileSystem
	Configuration Settings
	Example 12-1: Enumeration of handling file systems and their settings.

	The method GetRootDirectory and the properties IsVirtualShare and VirtualName reveal information about the root folder for the file system.
	For the default file system NativeFileSystem, the settings in table 12-22 are to be expected.
	Table 12-22: Configuration settings for default file system handler, NativeFileSystem.
	Root Folder
	UnifiedDirectory
	GetDirectories
	Example 12-2: Using EPiServer.FileSystem.UnifiedDirectory.GetDirectories method.
	ACL
	GetFiles

	Example 12-3: Using EPiServer.FileSystem.UnifiedDirectory.GetFiles method.

	UnifiedFile and UnifiedFileSummary
	Example 12-4: Using EPiServer.FileSystem.UnifiedDirectory.UnifiedFile.QueryAccess method.
	Example 12-5: Using EPiServer.FileSystem.UnifiedDirectory.UnifiedFile.Summary property.

	UnifiedSearchQuery, UnifiedSearchHitCollection and UnifiedSearchHit
	Example 12-6: Using EPiServer.FileSystem.UnifiedSearchQuery.Search
	13
	Extending EPiServer

	Perhaps the most interesting aspect of extensibility is the editor that is available for editing LongString properties (the LongString editor is fondly known as the ‘DHTML Editor’), EPiServer Admin mode and EPiServer Edit mode, respectively.

	Extensible Areas of the EPiServer Admin and Edit Mode
	Admin Mode Areas
	Figure 13-1: The extensible areas of EPiServer Admin mode.

	Edit Mode Areas
	Figure 13-2: The extensible areas of the EPiServer Edit mode.

	Creating Plug-Ins for EPiServer
	As we don’t expect every single reader of this book to take in this book from cover to cover in one sitting, we will create all ...
	Order is always a positive and although the plug-ins we create in this chapter go in the root folder of the Web site, you might ...

	EPiServer.PlugIn Name Space
	Figure 13-3: Inheritance hierarchy for classes in EPiServer.PlugIn name space.
	Classes in the EPiServer.PlugIn Name Space
	Table 13-1: Classes in EPiServer.PlugIn name space.

	Interfaces in the EPiServer.PlugIn Name Space
	Table 13-2: Interfaces in EPiServer.PlugIn name space.

	Enumerations in the EPiServer.PlugIn Name Space
	Table 13-3: Enumerations in EPiServer.PlugIn name space.
	EPiServer.PlugIn.PlugInArea Enumeration
	Table 13-4: Members on the enumeration EPiServer.PlugIn.PlugInArea.

	EPiServer.PlugIn.PlugInAttribute
	Following what has become Microsoft .NET development tradition, you can enter the class name when used in the source file either...
	Table 13-5: Public properties for EPiServer.PlugIn.PlugInAttribute.
	EPiServer.PlugIn.GuiPlugInAttribute
	Public Properties for GuiPlugInAttribute
	Table 13-6: Public properties for EPiServer.PlugIn.GuiPlugInAttribute.

	Public Methods for GuiPlugInAttribute
	Table 13-7: Public methods for EPiServer.PlugIn.GuiPlugInAttribute.

	More Information on the GuiPlugInAttribute
	EPiServer.PlugIn.GuiPlugInAttribute.Area
	EPiServer.PlugIn.GuiPlugInAttribute.Url

	EPiServer.PlugIn.PageDefinitionTypePlugInAttribute
	Table 13-8: Public methods for EPiServer.PlugIn.PageDefinitionTypePlugInAttribute.

	EPiServer.PlugIn.PlugInDescriptor
	Public Properties
	Table 13-9: Public properties for EPiServer.PlugIn.PlugInDescriptor.

	Public Methods
	Table 13-10: Public methods for EPiServer.PlugIn.PlugInDescriptor.

	EPiServer.PlugIn.PlugInLocator
	Public Methods
	Table 13-11: Public methods for EPiServer.PlugIn.PlugInLocator.

	EPiServer.PlugIn.PlugInSettings
	Public Methods
	Table 13-12: Public methods for EPiServer.PlugIn.PlugInSettings.

	EPiServer.PlugIn.ScheduledPlugInAttribute
	Public Properties
	Table 13-13: Public properties for EPiServer.PlugIn.ScheduledPlugInAttribute.

	Plug-Ins for the ActionWindow (EPiServer Edit Mode)
	Figure 13-4: Edit mode Action window.
	Simple Plug-In for the Action Window
	1. In Visual Studio .NET, right-click on the current project name, select Add and then ‘Add Web User Control’.
	2. Name this Web User Control ‘ActionWindowSimpleton’.
	3. Switch to HTML mode and enter the text: ‘Hello Action window!’.
	4. Open the code-behind file and add the all-important GuiPlugInAttribute
	Example 13-1: The GuiPlugInAttribute for ActionWindowSimpleton.
	5. Compile and run.
	6. Open EPiServer Edit mode and then the Action window, which should look something like this:
	Figure 13-5: ActionWindowSimpleton plug-in in the Action window.

	7. Clicking on the ActionWindowSimpleton link should produce this salutation:
	Figure 13-6: ActionWindowSimpleton plug-in open.

	Create a Live Clock Plug-In for the Action Window
	Create the Web User Control ActionWindowClock
	The HTML Part for ActionWindowClock
	Example 13-2: The JavaScript to add to the HTML part of ActionWindowClock.
	The Code-Behind File for ActionWindowClock

	Example 13-3: The code-behind file for ActionWindowClock Web User Control.
	Figure 13-7: ActionWindowClock plug-in: on the left in the Action window menu, on the right in action.

	Plug-Ins for the Edit Panel Tab Strip (EPiServer Edit Mode)
	Very Simple Edit Panel Tab Strip Extension
	1. In Visual Studio .NET, right-click on the current project name, select Add and then ‘Add Web User Control’.
	2. Name this Web User Control ‘EditPanelSimpleton’.
	3. Switch to HTML mode and enter the text: ‘Hello Edit panel tab strip!’.
	4. Open the code-behind file and add the all-important GuiPlugInAttribute
	Example 13-4: The GuiPlugInAttribute for EditPanelSimpleton.
	5. Compile and run.
	6. Open EPiServer Edit mode, click on one of the Web Pages and then look at the right pane. It should look something like this:
	Figure 13-8: EditPanelSimpleton plug-in in the Edit Panel tab strip.

	7. Clicking on the EditPanelSimpleton tab should produce this salutation:
	Figure 13-9: EditPanelSimpleton plug-in open.

	A Page Information Plug-In for the Edit Panel Tab Strip
	Create the Web User Control EditPanelPageInfo
	The HMTL Part of EditPanelPageInfo
	Example 13-5: HTML part of EditPanelPageInfo.
	The Code-Behind File for EditPanelPageInfo

	Example 13-6: The code-behind file for EditPanelPageInfo.
	Using the Plug-In
	Figure 13-10: EditPanelPageInfo plug-in at work.

	Plug-Ins for the EditTree Tab Strip (EPiServer Edit Mode)
	Creating a Simple Plug-In for the EditTree Tab Strip
	1. In Visual Studio .NET, right-click on the current project and select first Add and then ‘Add Web User Control’.
	2. Name this Web User Control ‘EditTreeSimpleton’.
	3. Switch to HTML mode and enter the text: ‘Hello Edit Tree tab strip!’.
	4. Open the code-behind file and add the all-important GuiPlugInAttribute
	Example 13-7: The GuiPlugInAttribute for EditTreeSimpleton.
	5. Compile and run.
	6. Open EPiServer Edit mode. The Edit Tree tab strip should look something like this:
	Figure 13-11: EditTreeSimpleton plug-in in the Edit Tree tab strip.

	7. Clicking on the EditTreeSimpleton tab should produce this salutation:
	Figure 13-12: EditTreeSimpleton plug-in open.

	Example 13-8: HTML part of EditTreeSimpleton.

	Create a ‘My Pages’ Edit Tree Extension
	Again we’ll turn to FindPagesWithCriteria for assistance in selecting the pages whichs were created by the currently logged-on u...
	ExplorerTree (EPiServer.WebControls.ExlporerTree) is the ideal control for the job, and yet it’s not perfect. ExplorerTree is th...
	Create the Web User Control EditTreeMyPages
	HTML Part
	Example 13-9: HTML Part of EditTreeMyPages.ascx.

	A very important part of the ExplorerTree is the attribute ClickScript. The contents of this attribute, ‘window.parent.navigateE...
	Code-Behind File for Web User Control EditTreeMyPages
	Example 13-10: Code-Behind File for Web User Control EditTreeMyPages
	Figure 13-13: Web User Control EditTreeMyPages at work.
	Extending the Extension

	In cases where single editors are responsible for a whole sub-tree, ExplorTree should be fine.

	Plug-Ins for the System Settings Area of EPiServer Admin Mode
	Simplest Possible System Settings Area Plug-In
	1. In Visual Studio .NET, right-click on the current project and select first Add and then ‘Add Web User Control’.
	2. Name this Web User Control ‘SystemSettingsSimpleton’.
	3. Switch to HTML mode and enter the text: ‘Hello System settings!’.
	4. Open the code-behind file and add the all-important GuiPlugInAttribute
	Example 13-11: The GuiPlugInAttribute for SystemSettingsSimpleton.
	5. Compile and run.
	6. Open EPiServer Admin mode, click on System settings in the right pane.
	7. Your System setting right pane should look something like this:
	Figure 13-14: SystemSettingsSimpleton plug-in in the System settings tab strip.

	8. Clicking on the Simpleton tab should produce this salutation:
	Figure 13-15: SystemSettingsSimpleton plug-in open.

	Example 13-12: HTML part of SystemSettingsSimpleton.
	Example 13-13: Code-behind file for SystemSettingsSimpleton.

	Web.config Editor for the System Settings Area in EPiServer Admin Mode
	For presentation and visual support, we’ll use a templated control, the DataList (System.Web.UI.WebControls.DataList).
	From the point of view of the DataList control (i.e. its DataSource property), AllAppSettings return a string array (string[]) of all names of the settings found in the appSettings section.
	We boldly name this plug-in WebConfigEditor, although you might find it lacking in some respects.
	DataList Information
	HTML Part of the Plug-In
	Example 13-14: HTML part of System setting area plug-in WebConfigEditor.

	The more interesting parts of the HTML code in example 13-14 have been marked in bold face font.
	The opening tag for the DataList control binds three commands to functions in the code-behind file (DataList can handle five nam...
	Two of DataList’s templates are used, ItemTemplate and EditItemTemplate. Only the single item being edited will be rendered using the EditItemTemplate, all the others adhere to the ItemTemplate.
	In the EditItemTemplate, we use a Label and a TextBox control to render the settings name and it value, respectively. The TextBo...
	Code-Behind File for the Plug-In
	Example 13-15: Code-behind file for System setting area plug-in WebConfigEditor.
	Plug-In Class Attribute GuiPlugIn
	Function EditItem

	For the DataList control, whenever EditItemIndex is set to a value in the allowed range (0 to DataList.Items.Count - 1) the Item whose index is DataList.EditItemIndex will be rendered using the EditItemTemplate.
	Function CancelItem
	Function UpdateItem

	The new setting value is written to the web.config file using EPiServer.Global .EPConfig.ConfigFile.SetAppSetting, and, lastly, we call EPiServer.Global.EPConfig.ConfigFile.Persist to convince EPiServer we really meant to save the new setting.
	Cancelling DataList Edit mode is the penultimate thing to happen in UpdateItem.
	Look (and Feel) of WebConfigEditor
	Figure 13-16: WebConfigEditor plug-in in the System settings tab strip.
	Figure 13-17: WebConfigEditor plug-in open (screen dump has been trimmed).
	Figure 13-18: Result of clicking on the Edit Button.

	Conclusion
	Improvements Left to the Reader
	1. Add new setting. A button to add a new setting could either go in the HeaderTemplate of the DataList control or outside the HTML table altogether. Use EPiServer.Global.EPConfig.ConfigFile.SetAppSetting.
	2. User entry control. For settings which adhere to the ‘EPxNomen’ naming scheme, it would be a good idea to check user input. Use System.Boolean .Parse and System.Int32.Parse, respectively.
	3. Save current value of setting. You could save a few CPU cycles by saving the current setting value, in a class-level string variable, as you enter Edit mode (in EditItem) and then, in UpdateItem, compare the two values.
	4. Read and display any settings comment from web.config using EPiServer .Global.EPConfig.ConfigFile.GetComment. Could likely be...
	5. Don’t display settings which are controlled via other means.
	6. Don’t display settings which should be considered read-only.

	Plug-Ins for the AdminMenu (EPiServer Admin Mode)
	Very Simple Plug-In for the Admin Mode Menu
	1. In Visual Studio .NET, right-click on the current project and select first Add and then ‘Add Web Form’.
	2. Name this Web Form ‘AdminMenuSimpleton’.
	3. Switch to HTML mode and enter the text: ‘Hello Admin mode menu!’, inside the HTML form.
	4. Change the id property of the form to ‘AdminMenuSimpleton’ (the HTML Title tag has automatically been set to ‘AdminMenuSimpleton’).
	5. Open the code-behind file and add the all-important GuiPlugInAttribute (remember that since the extension is a Web Form, the file extension is aspx.
	Example 13-16: The GuiPlugInAttribute for AdminMenuSimpleton.
	6. Compile and then either start debugging and open EPiServer Admin mode or switch to the browser and open Admin mode.
	7. The Tools section should have a new addition.
	Figure 13-19: AdminMenuSimpleton plug-in in the Admin menu, Tools section.

	8. Clicking on the AdminMenuSimpleton link should produce this salutation in the right pane:
	Figure 13-20: AdminMenuSimpleton plug-in open.

	A Perhaps Useful Addition to the Admin Mode Menu
	Also, for this last GUI extension we’ll be presented with the small challenge of making our contribution look like it was always...
	Create the Web Form
	The HTML Part
	Example 13-17: Declaration of EPiServer.WebControls name space in the HTML part of the Web Form AdminMenuRecentlyCreatedList.aspx.
	Example 13-18: EPiServer.WebControls.DataList added to the Web Form AdminMenuRecentlyCreatedList.aspx.
	Example 13-19: Complete HTML part of AdminMenuRecentlyCreatedList.aspx.
	The Code-Behind File

	Example 13-20: Code-behind file for Web Form AdminMenuRecentlyCreatedList.
	Figure 13-21: Admin mode menu Tools section with new menu choice ‘Recent pages’.
	Figure 13-22: Result of running AdminMenuRecentlyCreatedList Web Form.

	Example 13-21: Style sheet specification line on the header of an Admin mode Web Form.
	Example 13-22: Style sheet specification added to the header section of AdminMenuRecentlyCreatedList.aspx.
	Figure 13-23: Final visual appearance of AdminMenuRecentlyCreatedList.

	Example 13-23: Finalised HTML part for AdminMenuRecentlyCreatedList.aspx.

	Elementary Troubleshooting of GUI Plug-Ins
	1. Letting plug-in class inherit from the incorrect mother class, e.g. letting a plug-in for the System setting area inherit fro...
	2. Forgetting to name the plug-in in the GuiPlugIn attribute’s Url property. Failing to do so produces the message ‘User control source files must have a .ascx file extension.’ for a System settings area plug-in when attempting to open it.

	Extending the DHTML Editor
	As editors in general are not good candidates for any client-server processing, you will find that the extensibility model of th...
	When extending the DHTML Editor, we switch names spaces to EPiServer.Editor and the plug-in attribute to use is now EditorPlugIn...
	Figure 13-24: The DHTML Editor for LongString properties/values.
	EPiServer.Editor.EditorPlugInAttribute Class

	Of the mother class properties, DisplayName is still very important and you should assign DisplayName the same importance as for the plug-ins discussed earlier in this chapter.
	Public Properties for EditorPlugInAttribute
	Table 13-14: Public properties for EditorPlugInAttribute.

	Public Methods for EditorPlugInAttribute
	Table 13-15: Public methods for EditorPlugInAttribute.

	EPiServer.Editor.ToolUsage Enumeration
	Table 13-16: Members in the ToolUsage Enumeration.

	EPiServer.Editor.Tools.ToolBase Class
	Public Properties for ToolBase
	Table 13-17: Public properties for ToolBase.

	Protected Methods for ToolBase
	Table 13-18: Protected methods for ToolBase.

	EPiServer.Editor.Tools.IInitializableTool Interface
	Example 13-24: EPiServer.Editor.Tools.IInitializableTool.Initialize function.

	A Skeleton DHTML Editor Extension Plug-In
	Example 13-25: Skeleton DHTML Editor extension plug-in.
	1. It must be a class.
	2. The class must inherit EPiServer.Editor.Tools.ToolBase.
	3. It must have an EditorPlugIn attribute (EPiServer.Editor.EditorPlugIn).
	4. The EditorPlugIn attribute must have a DisplayName property.
	5. The EditorPlugIn attribute must have a Usage property.

	Basic DHTML Editor Plug-In
	1. In Visual Studio .NET, right-click on the current project name, select Add and then ‘Add Class’.
	2. Name this class ‘DhtmlEditorSimpleton’.
	3. Add the all-important EditorPlugIn attribute
	Example 13-26: The GuiPlugInAttribute for SystemSettingsSimpleton.
	4. Let the class inherit EPiServer.Editor.Tools.ToolBase.

	Example 13-27: Class DhtmlEditorSimpleton inherits EPiServer.Editor.Tools.ToolBase.
	5. Add a client side script to the constructor for DhtmlEditorSimpleton.

	Example 13-28: Client-side script in the constructor for DhtmlEditorSimpleton.
	6. Compile, build, and run. Open EPiServer Edit mode, select a page containing a LongString property/value and activate the Edit...
	Figure 13-25: The DHTML Editor with the DhtmlEditorSimpleton plug-in visible in the tool-bar.

	7. Clicking on the DhtmlEditorSimpleton tool-bar button produces this salutation:
	Figure 13-26: DhtmlEditorSimpleton plug-in in action.

	Before we move on, please take a moment to reflect on this skeleton plug-in for the DHTML Editor. Minimal it may be, but it stil...
	We will create two more plug-ins for the DHTML Editor. Actually they are both variations on the same theme - you decide which you prefer.
	The first plug-in will be made part both of the DHTML tool-bar and the context menu (shortcut, right-click, menu) in the Editor. The second will not have any visible part at all; it will act covertly, unbeknown to the user.
	As for actions, both will convert some of the letters in the text entered in the Editor into HTML entities, e.g. ‘æ’ into ‘æ’. Plug-in number one, the visible one, will be made to toggle between actual letters and their HTML entity counter- parts.
	Both plug-ins will also be created outside your main Web site Visual Studio .NET solution, and we’ll start by going over a few things you need to think about when doing so.
	Creating DHTML Editor Plug-Ins as Separate Visual Studio .NET Solutions
	1. Create the plug-ins as ‘Class Library’ solutions.
	2. Add EPiServer.dll from the correct EPiServer binaries daughter folder. (You will find the correct folder as a daughter folder to ‘%ProgramFiles%\ EPiServer4\binaries\EPiServer’, its name is its version number.).
	3. Add System.Web.dll (found in the list on the .NET tab when adding References).
	4. Subsequent to the compile and build steps, copy the resulting library file to the EPiServer Web site’s bin folder.

	A Visible DHTML Editor Plug-In to Toggle between Letter and HTML Entity
	Folders Used
	Create a New Class Library in Visual Studio .NET Solution

	Two references, for EPiServer and for System.Web, in the form of the library files EPiServer.dll and System.Web.dll, are added.
	Example 13-29: Source code for plug-in class DhtmlEditorLetterToEntityVisible.
	Create Client-Side JavaScript File LetterToHtmlEntity.js

	We decided to make the script toggle between letter and HTML Entity representation. One lesson we learned is that you cannot sim...
	Example 13-30: Desired JavaScript replace statements using ‘Æ’ directly.
	Example 13-31: Client-side JavaScript for DhtmlEditorLetterToEntityVisible class.

	You might want to make use of the fact that in the ANSI character table there is a fixed distance of 32 between the upper and lower case versions of letters.
	Using the Plug-In
	Figure 13-27: The DHTML Editor with the DhtmlEditorLetterToEntityVisible plug-in visible as a new button in the tool-bar.
	Figure 13-28: The DhtmlEditorLetterToEntityVisible plug-in has been called once.

	Visual Tuning of the Plug-In

	Tool-bar button placement is controlled via the integer property ToolbarIndex. The rule is: the higher the value, the farther the placement to the right on the tool-bar.
	Menu item placement is similarly controlled via the integer property MenuIndex. This time the rule is: the higher the value, the closer the placement to the bottom of the menu.
	An Invisible DHTML Editor Plug-In to Toggle between Letter and HTML Entity

	The rationale for this plug-in is simplicity for Editors; they can work in their own language and a higher degree of standards a...
	N.B. This plug-in requires EPiServer 4.3 or later.
	Create the DhtmlEditorLetterToEntityVisible Class Library

	This is what the class source code looks like, comments to follow.
	Example 13-32: Source code for DhtmlEditorLetterToEntityCovert.cs.
	Create Client-Side JavaScript File LetterToHtmlEntityCovert.js

	Example 13-33: JavaScript file LetterToHtmlEntityCovert.js

	Shadow Folders
	Switching on Shadow Folders is as easy as adding one line to the settings file web.config:
	Example 13-34: Enabling Shadow Folders in web.config.

	NB! Access permissions for the Shadow Folders must be specified in web.config, as they are not automatically inherited.
	A
	Finding Information

	Information on the Internet
	A Lot Is Available on the EPiServer Web Site
	Having been operating for a few years, the EPiServer Web site is quite comprehensive. On the site you’ll find information not only on EPiServer products and customers but also:

	EPiServer Developer Community
	Developer Forums
	Code Samples

	Frequently Asked Questions (Common Questions) Lists
	Technical notes and White Papers
	EPiServer Software Development Kit
	Syntax Definition File
	To benefit from the IntelliSense, you must include a name space declaration in a tag which wraps the part on which you are worki...
	Example A-1: XML Name Space declaration for EPiServer Web Custom Controls.
	B
	Database Queries

	Important Database Tables
	Table B-1: The most important tables in the database for Page Types, Properties and Web Pages.
	The relationships between the tables can be seen in figures B-1 and B-2.
	Figure B-1: Relationships between the database tables, tblPage, tblProperty, tblPageDefinition and tblPageType.
	Figure B-2: Relationships between tblPage, tblACL, tblSID, tblSIDGroup and tblUser.

	SQL Queries to Retrieve Page Types, Properties and Web Pages
	List All Defined Page Types
	Example B-1: SQL query to list all defined Page Types.

	List All Page Template Files, Page Types and Web Pages
	Example B-2: SQL Query to list all Page Template Files, Page Types and Web Pages.

	List All Defined Data Types
	Example B-3: SQL query to list all Property Data Types.

	List All Defined Property Types and Their Data Type
	Example B-4: SQL Query to list all defined Property Types and their Data Type.

	List All Page Types and Their Properties
	Example B-5: SQL query list all defined Page Types and their Properties.

	List All Dynamic Properties
	Example B-6: SQL query to list all Dynamic Properties.

	List All Web Pages with Their Properties and Current Values
	Example B-7: SQL query to list all Web Pages with their Properties and current values.

	SQL Query to List All User Tables and Their Columns In a SQL Server Database
	Example B-8: SQL query to list all user tables and their columns in a Microsoft SQL Server database.

	SQL Server Procedure to Display the Web Page Hierarchy
	This is what it looks like adapted for tblPage:
	Example B-9: SQL commands to produce and execute a recursive stored procedure to display the Web Page hierarchy in table tblPage.

	To see only the Web pages which are marked as VisibleInMenu (value set to 1), alter the above procedure to look like this:
	Example B-10: Recursive stored procedure to list the hierarchy of all visible Web pages.
	C
	Developers’ Book List

	D
	ANSI To HTML Entity Table
	Table D-1: ANSI character code to HTML Entity Names.
	128
	ı
	192
	À
	129
	193
	Á
	130
	‚
	194
	Â
	131
	ƒ
	195
	Ã
	132
	„
	196
	Ä
	133
	…
	197
	Å
	134
	†
	198
	Æ
	135
	‡
	199
	Ç
	136
	ˆ
	200
	È
	137
	‰
	201
	É
	138
	³
	202
	Ê
	139
	‹
	203
	Ë
	140
	Œ
	204
	Ì
	141
	205
	Í
	142
	˙
	206
	Î
	143
	207
	Ï
	144
	208
	Ã
	145
	‘
	209
	Ñ
	146
	’
	210
	Ò
	147
	“
	211
	Ó
	148
	”
	212
	Ô
	149
	o
	213
	Õ
	150
	-
	214
	Ö
	151
	-
	215
	°
	152
	˜
	216
	Ø
	153
	™
	217
	Ù
	154
	ð
	218
	Ú
	155
	›
	219
	Û
	156
	œ
	220
	Ü
	157
	221
	Å
	158
	˛
	222
	×
	159
	Ÿ
	223
	ß
	160
	224
	à
	161
	¡
	225
	á
	162
	¢
	226
	â
	163
	£
	227
	ã
	164
	¤
	228
	ä
	165
	¥
	229
	å
	166
	�
	230
	æ
	167
	§
	231
	ç
	168
	¨
	232
	è
	169
	©
	233
	é
	170
	ª
	234
	ê
	171
	«
	235
	ë
	172
	236
	ì
	173
	�
	237
	í
	174
	®
	238
	î
	175
	¯
	239
	ï
	176
	˚
	240
	²
	177
	±
	241
	ñ
	178
	·
	242
	ò
	179
	¸
	243
	ó
	180
	´
	244
	ô
	181
	µ
	245
	õ
	182
	¶
	246
	ö
	183
	·
	247
	÷
	184
	¸
	248
	ø
	185
	¶
	249
	ù
	186
	º
	250
	ú
	187
	»
	251
	û
	188
	¹
	252
	ü
	189
	º
	253
	Æ
	190
	½
	254
	
	191
	¿
	255
	Ø

	List of Figures
	List of Tables
	List of Examples
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X

